{"title":"Effects of pollination and plant genotype on Ustilago maydis disease development on the ears of maize inbreds and maize-teosinte near-isogenic lines","authors":"Usha Bhatta, Shavannor M. Smith","doi":"10.1111/jph.13378","DOIUrl":null,"url":null,"abstract":"<p><i>Ustilago maydis</i>, the fungus that causes corn smut disease, leads to significant economic losses in maize cultivars. A key feature of successful plant pathogens is their ability to utilize the plant–pathogen relationship to influence disease progression. Greenhouse experiments examined how pollination and plant genotype affect disease incidence and severity of <i>U. maydis</i> infection. Four <i>U. maydis</i> susceptible maize inbreds (B73, H95, Mo17, and Golden Bantam), and two <i>U. maydis</i> resistant maize-teosinte near-isogenic lines (NIL1 and NIL2) were utilized for this work. Three-hundred and sixty plants (pollinated and unpollinated) from the six plant genotypes were inoculated with <i>U. maydis</i> and assessed based on five phenotypic traits [(1) disease incidence, (2) gall number, (3) gall weight, (4) disease severity, and (5) area under disease progress curve]. All pollinated plants demonstrated significantly (<i>p</i> < .001) lower disease incidence, gall number, gall weight, area under the disease progress curve, and severity in comparison to the unpollinated plants. Both pollinated resistant NILs demonstrated significantly (<i>p</i> < .001) less disease development than the pollinated susceptible maize plants and two unpollinated NILs. Therefore, disease resistance to <i>U. maydis</i> was dependent upon pollination and plant genotype. This provides novel evidence that pollination can significantly improve resistance to <i>U. maydis</i> in different plant genotypes. Enhanced disease resistance observed in the resistant NILs after pollination indicates pollination-mediated resistance is one of the resistance mechanisms functioning in the resistant NILs. Integration of pollination-mediated resistance and resistance introgressed from a maize progenitor will be useful for improving resistance to <i>U. maydis</i> and management of the disease.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"172 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jph.13378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13378","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ustilago maydis, the fungus that causes corn smut disease, leads to significant economic losses in maize cultivars. A key feature of successful plant pathogens is their ability to utilize the plant–pathogen relationship to influence disease progression. Greenhouse experiments examined how pollination and plant genotype affect disease incidence and severity of U. maydis infection. Four U. maydis susceptible maize inbreds (B73, H95, Mo17, and Golden Bantam), and two U. maydis resistant maize-teosinte near-isogenic lines (NIL1 and NIL2) were utilized for this work. Three-hundred and sixty plants (pollinated and unpollinated) from the six plant genotypes were inoculated with U. maydis and assessed based on five phenotypic traits [(1) disease incidence, (2) gall number, (3) gall weight, (4) disease severity, and (5) area under disease progress curve]. All pollinated plants demonstrated significantly (p < .001) lower disease incidence, gall number, gall weight, area under the disease progress curve, and severity in comparison to the unpollinated plants. Both pollinated resistant NILs demonstrated significantly (p < .001) less disease development than the pollinated susceptible maize plants and two unpollinated NILs. Therefore, disease resistance to U. maydis was dependent upon pollination and plant genotype. This provides novel evidence that pollination can significantly improve resistance to U. maydis in different plant genotypes. Enhanced disease resistance observed in the resistant NILs after pollination indicates pollination-mediated resistance is one of the resistance mechanisms functioning in the resistant NILs. Integration of pollination-mediated resistance and resistance introgressed from a maize progenitor will be useful for improving resistance to U. maydis and management of the disease.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.