Dr. Wooyoung Jin, Dr. Gyujin Song, Dr. Jung-Keun Yoo, Prof. Sung-Kyun Jung, Dr. Tae-Hee Kim, Dr. Jinsoo Kim
{"title":"Front Cover: Advancements in Dry Electrode Technologies: Towards Sustainable and Efficient Battery Manufacturing (ChemElectroChem 17/2024)","authors":"Dr. Wooyoung Jin, Dr. Gyujin Song, Dr. Jung-Keun Yoo, Prof. Sung-Kyun Jung, Dr. Tae-Hee Kim, Dr. Jinsoo Kim","doi":"10.1002/celc.202481701","DOIUrl":null,"url":null,"abstract":"<p><b>The front cover</b> illustrates a comparison between the wet and dry electrode coating processes for Li-ion batteries. On the left side, the wet electrode coating process is depicted, requiring a lengthy drying process and generating toxic solvents. This is represented by a background of a heavily polluted city with smog and emissions. On the right side, the dry electrode coating process, which does not require drying or the use of solvents, is shown as eco-friendly. This is depicted by an electric vehicle equipped with batteries made using the dry process, maintaining a clean and green city environment. More information can be found in the Review Article by Tae-Hee Kim, Jinsoo Kim, and co-workers (DOI: 10.1002/celc.202400288). Cover design by Cube3D Graphic.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481701","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The front cover illustrates a comparison between the wet and dry electrode coating processes for Li-ion batteries. On the left side, the wet electrode coating process is depicted, requiring a lengthy drying process and generating toxic solvents. This is represented by a background of a heavily polluted city with smog and emissions. On the right side, the dry electrode coating process, which does not require drying or the use of solvents, is shown as eco-friendly. This is depicted by an electric vehicle equipped with batteries made using the dry process, maintaining a clean and green city environment. More information can be found in the Review Article by Tae-Hee Kim, Jinsoo Kim, and co-workers (DOI: 10.1002/celc.202400288). Cover design by Cube3D Graphic.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.