{"title":"A High Up-Time and Security Centered Resource Provisioning Model Toward Sustainable Cloud Service Management","authors":"Deepika Saxena;Ashutosh Kumar Singh","doi":"10.1109/TGCN.2024.3356065","DOIUrl":null,"url":null,"abstract":"This paper addresses the pivotal challenge of achieving seamless performance in Cloud Data Centres \n<inline-formula> <tex-math>$( \\mathbb {CDC}\\text{s}$ </tex-math></inline-formula>\n) while meeting high availability, security, and sustainability requirements. Existing approaches often struggle to cater to all critical objectives simultaneously and overlook the significance of inter-dependent Virtual Machines (VMs) during resource distribution. To tackle these issues, a novel sustainable resource management model is proposed to provide high availability and reduce security breaches within \n<inline-formula> <tex-math>$ \\mathbb {CDC}\\text{s}$ </tex-math></inline-formula>\n. The contributions include computing VM ranks to prioritize critical VMs for high availability, workload distribution with power and heat constraints for a sustainable environment, and minimizing security breaches through monitoring and terminating malicious VMs. Real-world Google Cluster workloads validate the model’s efficacy, showcasing improved availability, resource utilization, Power Usage Effectiveness (PUE), up to 15.11%, 19%, and 23.4%, respectively with reduced security breaches, and energy consumption up to 53.8% and 17.1%, respectively.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1182-1195"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10409548/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the pivotal challenge of achieving seamless performance in Cloud Data Centres
$( \mathbb {CDC}\text{s}$
) while meeting high availability, security, and sustainability requirements. Existing approaches often struggle to cater to all critical objectives simultaneously and overlook the significance of inter-dependent Virtual Machines (VMs) during resource distribution. To tackle these issues, a novel sustainable resource management model is proposed to provide high availability and reduce security breaches within
$ \mathbb {CDC}\text{s}$
. The contributions include computing VM ranks to prioritize critical VMs for high availability, workload distribution with power and heat constraints for a sustainable environment, and minimizing security breaches through monitoring and terminating malicious VMs. Real-world Google Cluster workloads validate the model’s efficacy, showcasing improved availability, resource utilization, Power Usage Effectiveness (PUE), up to 15.11%, 19%, and 23.4%, respectively with reduced security breaches, and energy consumption up to 53.8% and 17.1%, respectively.