Decoding the interplay of mold temperature and catalysts concentration on the crystallinity and mechanical properties of anionic polyamide 6: a combined experimental and statistical approach
{"title":"Decoding the interplay of mold temperature and catalysts concentration on the crystallinity and mechanical properties of anionic polyamide 6: a combined experimental and statistical approach","authors":"","doi":"10.1016/j.polymer.2024.127562","DOIUrl":null,"url":null,"abstract":"<div><p>Anionic polyamide 6 (aPA6), synthesized via the ring-opening polymerization of ε-caprolactam, has emerged as a promising matrix for high-performance thermoplastic composites, offering advantages over conventional thermoplastics and thermosets. However, optimizing the microstructure and mechanical properties of aPA6 requires a comprehensive understanding of how processing conditions influence polymerization kinetics and resulting material characteristics. This work systematically investigates the interplay between two critical processing parameters, i.e., the mold temperature and catalysts concentration, on the microstructural and thermomechanical properties of aPA6, via a combined experimental and statistical approach. Increasing the mold temperature from 145 °C to 175 °C and the catalysts concentration led to a reduction in crystallinity, due to the promotion of polymerization over crystallization. Higher temperatures and concentrations also slightly anticipated thermal degradation onset from 388 °C to 327 °C. The elastic modulus decreased from 3.4 GPa to 2.7 GPa as temperature increased, primarily governed by the diminishing crystallinity. Similarly, the ultimate tensile strength declined from 80 MPa to 68 MPa with rising temperature. Interestingly, the strain at break exhibited a complex dependence, peaking at 48 % for an intermediate temperature of 165 °C and lower catalysts concentration, suggesting an optimal balance of crystallinity, branching, and high molecular weight. Statistical empirical models captured these relationships, enabling prediction and tailoring of aPA6 properties by tuning processing conditions. These insights pave the way for optimized manufacturing of high-performance aPA6 composites via techniques like thermoplastic resin transfer molding and expand potential applications to thermally sensitive reinforcements like natural fibers.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003238612400898X/pdfft?md5=c2e64aaa6d3648d8bf7cecb6ff9eac40&pid=1-s2.0-S003238612400898X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612400898X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Anionic polyamide 6 (aPA6), synthesized via the ring-opening polymerization of ε-caprolactam, has emerged as a promising matrix for high-performance thermoplastic composites, offering advantages over conventional thermoplastics and thermosets. However, optimizing the microstructure and mechanical properties of aPA6 requires a comprehensive understanding of how processing conditions influence polymerization kinetics and resulting material characteristics. This work systematically investigates the interplay between two critical processing parameters, i.e., the mold temperature and catalysts concentration, on the microstructural and thermomechanical properties of aPA6, via a combined experimental and statistical approach. Increasing the mold temperature from 145 °C to 175 °C and the catalysts concentration led to a reduction in crystallinity, due to the promotion of polymerization over crystallization. Higher temperatures and concentrations also slightly anticipated thermal degradation onset from 388 °C to 327 °C. The elastic modulus decreased from 3.4 GPa to 2.7 GPa as temperature increased, primarily governed by the diminishing crystallinity. Similarly, the ultimate tensile strength declined from 80 MPa to 68 MPa with rising temperature. Interestingly, the strain at break exhibited a complex dependence, peaking at 48 % for an intermediate temperature of 165 °C and lower catalysts concentration, suggesting an optimal balance of crystallinity, branching, and high molecular weight. Statistical empirical models captured these relationships, enabling prediction and tailoring of aPA6 properties by tuning processing conditions. These insights pave the way for optimized manufacturing of high-performance aPA6 composites via techniques like thermoplastic resin transfer molding and expand potential applications to thermally sensitive reinforcements like natural fibers.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.