{"title":"A three-stage single-miller CMOS OTA with no lower load capacitor limit","authors":"P. Manikandan","doi":"10.1016/j.vlsi.2024.102269","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than <span><math><mrow><mn>70</mn></mrow></math></span>° phase margin and more than <span><math><mrow><mn>10</mn><mspace></mspace><mi>dB</mi></mrow></math></span> gain margin with a load capacitor range of 0 to <span><math><mrow><mn>500</mn><mspace></mspace><mi>pF</mi></mrow></math></span> and consumes less quiescent current. The proposed OTA uses a smaller SMC of <span><math><mrow><mn>2</mn><mspace></mspace><mi>pF</mi></mrow></math></span> to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC <span><math><mrow><mn>90</mn><mspace></mspace><mi>nm</mi></mrow></math></span> CMOS technology with BSIM4 MOSFETs.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102269"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001330","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a Single Miller Capacitor (SMC) compensated three-stage Operational Transconductance Amplifier (OTA) for a wide range of load capacitors with a zero minimum load capacitor. The proposed three-stage OTA does not require a minimum load capacitor for OTA to be stable. The proposed work uses two different feed-forward transconductors to enhance the small-signal and large-signal performances of the OTA. This OTA achieves more than ° phase margin and more than gain margin with a load capacitor range of 0 to and consumes less quiescent current. The proposed OTA uses a smaller SMC of to drive a wide range of load capacitors. Furthermore, it saves the active area of the chip. The proposed OTA is simulated in a cadence virtuoso tool using UMC CMOS technology with BSIM4 MOSFETs.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.