Some identities on degenerate harmonic and degenerate higher-order harmonic numbers

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Taekyun Kim , Dae San Kim
{"title":"Some identities on degenerate harmonic and degenerate higher-order harmonic numbers","authors":"Taekyun Kim ,&nbsp;Dae San Kim","doi":"10.1016/j.amc.2024.129045","DOIUrl":null,"url":null,"abstract":"<div><p>The harmonic numbers and higher-order harmonic numbers appear frequently in several areas which are related to combinatorial identities, many expressions involving special functions in analytic number theory, and analysis of algorithms. The aim of this paper is to study the degenerate harmonic and degenerate higher-order harmonic numbers, which are respectively degenerate versions of the harmonic and higher-order harmonic numbers, in connection with the degenerate zeta and degenerate Hurwitz zeta function. Here the degenerate zeta and degenerate Hurwitz zeta function are respectively degenerate versions of the Riemann zeta and Hurwitz zeta function. We show that several infinite sums involving the degenerate higher-order harmonic numbers can be expressed in terms of the degenerate zeta function. Furthermore, we demonstrate that an infinite sum involving finite sums of products of the degenerate harmonic numbers can be represented by using the degenerate Hurwitz zeta function.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400506X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The harmonic numbers and higher-order harmonic numbers appear frequently in several areas which are related to combinatorial identities, many expressions involving special functions in analytic number theory, and analysis of algorithms. The aim of this paper is to study the degenerate harmonic and degenerate higher-order harmonic numbers, which are respectively degenerate versions of the harmonic and higher-order harmonic numbers, in connection with the degenerate zeta and degenerate Hurwitz zeta function. Here the degenerate zeta and degenerate Hurwitz zeta function are respectively degenerate versions of the Riemann zeta and Hurwitz zeta function. We show that several infinite sums involving the degenerate higher-order harmonic numbers can be expressed in terms of the degenerate zeta function. Furthermore, we demonstrate that an infinite sum involving finite sums of products of the degenerate harmonic numbers can be represented by using the degenerate Hurwitz zeta function.

关于退化谐波数和退化高阶谐波数的一些特性
谐波数和高阶谐波数经常出现在与组合同构、解析数论中涉及特殊函数的许多表达式以及算法分析有关的几个领域中。本文旨在研究退化谐波数和退化高阶谐波数,它们分别是谐波数和高阶谐波数的退化版本,与退化zeta和退化赫尔维茨zeta函数相关联。这里的退化zeta和退化Hurwitz zeta函数分别是黎曼zeta和Hurwitz zeta函数的退化版本。我们证明,涉及退化高阶谐波数的几个无限和可以用退化zeta函数来表示。此外,我们还证明,涉及退化谐波数乘积的有限和的无限和可以用退化赫尔维茨zeta函数来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信