{"title":"Development of multi-view 3D reconstruction system for bubble flow measurement","authors":"Miki Saito, Taizo Kanai","doi":"10.1016/j.flowmeasinst.2024.102680","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces the development of bubble measurement method utilizing a three-dimensional (3D) reconstruction technique from multi-view images. Multiple synchronized cameras were positioned around a water container, and calibration was performed to obtain external and internal camera parameters. Images of bubbles emerging from a nozzle were captured, and a machine learning technique was used to extract bubble silhouettes as foreground probability distributions, enabling the extraction of bubbles from images obtained with a simple lighting setup. These distributions were then projected onto a 3D voxel space using the visual hull method. It was confirmed that the method can successfully capture bubble generation, detachment, and rise behaviors, offering insights into understanding bubble dynamics and potential applications in 3D computational fluid dynamics validation.</p></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"99 ","pages":"Article 102680"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955598624001602/pdfft?md5=31acdc303389567b326102d63bba615c&pid=1-s2.0-S0955598624001602-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces the development of bubble measurement method utilizing a three-dimensional (3D) reconstruction technique from multi-view images. Multiple synchronized cameras were positioned around a water container, and calibration was performed to obtain external and internal camera parameters. Images of bubbles emerging from a nozzle were captured, and a machine learning technique was used to extract bubble silhouettes as foreground probability distributions, enabling the extraction of bubbles from images obtained with a simple lighting setup. These distributions were then projected onto a 3D voxel space using the visual hull method. It was confirmed that the method can successfully capture bubble generation, detachment, and rise behaviors, offering insights into understanding bubble dynamics and potential applications in 3D computational fluid dynamics validation.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.