Single atom doping induced charge-specific distribution of Cu1-TiO2 for selective aniline oxidation via a new mechanism

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Jiaheng Qin , Wantong Zhao , Jie Song , Nan Luo , Zheng-Lan Ma , Baojun Wang , Jiantai Ma , Riguang Zhang , Yu Long
{"title":"Single atom doping induced charge-specific distribution of Cu1-TiO2 for selective aniline oxidation via a new mechanism","authors":"Jiaheng Qin ,&nbsp;Wantong Zhao ,&nbsp;Jie Song ,&nbsp;Nan Luo ,&nbsp;Zheng-Lan Ma ,&nbsp;Baojun Wang ,&nbsp;Jiantai Ma ,&nbsp;Riguang Zhang ,&nbsp;Yu Long","doi":"10.1016/S1872-2067(24)60104-X","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites, achieving precise selectivity control in complex organic reactions, is a highly desirable yet challenging endeavor. Meanwhile, identifying the active site also represents a significant obstacle, primarily due to the intricate electronic environment of single atom site doped metal oxide. Herein, a single atom Cu doped TiO<sub>2</sub> catalyst (Cu<sub>1</sub>-TiO<sub>2</sub>) is prepared <em>via</em> a simple “colloid-acid treatment” strategy, which switches aniline oxidation selectivity of TiO<sub>2</sub> from azoxybenzene to nitrosobenzene, without using additives or changing solvent, while other metal or nonmetal doped TiO<sub>2</sub> did not possess. Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate, two PhNOH condense to azoxybenzene over TiO<sub>2</sub> catalyst. As for Cu<sub>1</sub>-TiO<sub>2</sub>, the charge-specific distribution between the isolated Cu and TiO<sub>2</sub> generates unique Cu<sub>1</sub>-O-Ti hybridization structure with nine catalytic active sites, eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene. This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"64 ","pages":"Pages 98-111"},"PeriodicalIF":15.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187220672460104X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing single atom sites doping into metal oxides to modulate their intrinsic active sites, achieving precise selectivity control in complex organic reactions, is a highly desirable yet challenging endeavor. Meanwhile, identifying the active site also represents a significant obstacle, primarily due to the intricate electronic environment of single atom site doped metal oxide. Herein, a single atom Cu doped TiO2 catalyst (Cu1-TiO2) is prepared via a simple “colloid-acid treatment” strategy, which switches aniline oxidation selectivity of TiO2 from azoxybenzene to nitrosobenzene, without using additives or changing solvent, while other metal or nonmetal doped TiO2 did not possess. Comprehensive mechanistic investigations and DFT calculations unveil that Ti-O active site is responsible for triggering the aniline to form a new PhNOH intermediate, two PhNOH condense to azoxybenzene over TiO2 catalyst. As for Cu1-TiO2, the charge-specific distribution between the isolated Cu and TiO2 generates unique Cu1-O-Ti hybridization structure with nine catalytic active sites, eight of them make PhNOH take place spontaneous dissociation to produce nitrosobenzene. This work not only unveils a new mechanistic pathway featuring the PhNOH intermediate in aniline oxidation for the first time but also presents a novel approach for constructing single-atom doped metal oxides and exploring their intricate active sites.

单原子掺杂诱导 Cu1-TiO2 的电荷特异性分布,通过新机制实现选择性苯胺氧化
利用掺入金属氧化物的单原子位点来调节其固有的活性位点,从而在复杂的有机反应中实现精确的选择性控制,是一项非常理想但又极具挑战性的工作。同时,确定活性位点也是一个重大障碍,这主要是由于单原子位点掺杂的金属氧化物具有错综复杂的电子环境。本文通过一种简单的 "胶体-酸处理 "策略制备了一种单原子掺杂 Cu 的 TiO2 催化剂(Cu1-TiO2),该催化剂能在不使用添加剂或不改变溶剂的情况下将 TiO2 的苯胺氧化选择性从偶氮苯转换到亚硝基苯,而其他金属或非金属掺杂的 TiO2 则不具备这种能力。综合机理研究和 DFT 计算表明,Ti-O 活性位点负责引发苯胺形成新的 PhNOH 中间体,两个 PhNOH 在 TiO2 催化剂上缩合成氮氧苯。至于 Cu1-TiO2,孤立的 Cu 和 TiO2 之间的电荷特异性分布产生了独特的 Cu1-O-Ti 杂化结构,其中有九个催化活性位点,其中八个使 PhNOH 自发解离生成亚硝基苯。这项工作不仅首次揭示了以苯胺氧化过程中的 PhNOH 中间体为特征的新机理途径,还提出了一种构建单原子掺杂金属氧化物并探索其复杂活性位点的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信