On the Auslander–Bridger–Yoshino theory for complexes of finitely generated projective modules

IF 0.7 2区 数学 Q2 MATHEMATICS
Yuya Otake
{"title":"On the Auslander–Bridger–Yoshino theory for complexes of finitely generated projective modules","authors":"Yuya Otake","doi":"10.1016/j.jpaa.2024.107790","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>R</em> be a two-sided noetherian ring. Auslander and Bridger developed a theory of projective stabilization of the category of finitely generated <em>R</em>-modules, which is called the stable module theory. Recently, Yoshino established a stable “complex” theory, i.e., a theory of a certain stabilization of the homotopy category of complexes of finitely generated projective <em>R</em>-modules. We introduce higher versions of several notions introduced by Yoshino, such as <sup>⁎</sup>torsionfreeness and <sup>⁎</sup>reflexivity. Also, we prove the Auslander–Bridger approximation theorem for complexes of finitely generated projective <em>R</em>-modules.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001877","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a two-sided noetherian ring. Auslander and Bridger developed a theory of projective stabilization of the category of finitely generated R-modules, which is called the stable module theory. Recently, Yoshino established a stable “complex” theory, i.e., a theory of a certain stabilization of the homotopy category of complexes of finitely generated projective R-modules. We introduce higher versions of several notions introduced by Yoshino, such as torsionfreeness and reflexivity. Also, we prove the Auslander–Bridger approximation theorem for complexes of finitely generated projective R-modules.

关于有限生成的射影模块复数的奥斯兰德-布里奇-吉野理论
设 R 是一个双面诺特环。Auslander 和 Bridger 提出了有限生成的 R 模范畴的投影稳定理论,称为稳定模理论。最近,吉野建立了稳定 "复数 "理论,即有限生成的射影 R 模块的复数同调范畴的某种稳定理论。我们引入了吉野引入的几个概念的更高版本,如⁎无扭转性和⁎反身性。此外,我们还证明了有限生成的投影 R 模块复数的奥斯兰德-布里奇近似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信