{"title":"Information bounds for Gaussian copula parameter in stationary semiparametric Markov models","authors":"Xiaohong Chen , Yanping Yi","doi":"10.1016/j.spl.2024.110254","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We prove that <span><math><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span> is the semiparametric efficient variance bound for estimating the correlation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than <span><math><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></math></span> (when <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any <span><math><mrow><mi>i</mi><mo>.</mo><mi>i</mi><mo>.</mo><mi>d</mi><mo>.</mo></mrow></math></span> data <span><math><msubsup><mrow><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> generated from a bivariate Gaussian copula with two unknown marginal distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002232/pdfft?md5=b9102a8c83b499e2cb4081c8f8393ced&pid=1-s2.0-S0167715224002232-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient . We prove that is the semiparametric efficient variance bound for estimating the correlation parameter in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than (when ), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any data generated from a bivariate Gaussian copula with two unknown marginal distributions.