Unveiling Potential Biomarkers for Urinary Tract Infection: An Integrated Bioinformatics Approach.

IF 0.7 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
Advanced biomedical research Pub Date : 2024-07-29 eCollection Date: 2024-01-01 DOI:10.4103/abr.abr_355_23
Reza Maddah, Fahimeh Ghanbari, Maziyar Veisi, Eman Koosehlar, Marzieh Shadpirouz, Zarrin Basharat, Alireza Hejrati, Bahareh Shateri Amiri, Lina Hejrati
{"title":"Unveiling Potential Biomarkers for Urinary Tract Infection: An Integrated Bioinformatics Approach.","authors":"Reza Maddah, Fahimeh Ghanbari, Maziyar Veisi, Eman Koosehlar, Marzieh Shadpirouz, Zarrin Basharat, Alireza Hejrati, Bahareh Shateri Amiri, Lina Hejrati","doi":"10.4103/abr.abr_355_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Urinary tract infections (UTIs) are a widespread health concern with high recurrence rates and substantial economic impact, and they can increase the prevalence of antibiotic resistance. This study employed an integrated bioinformatics approach to identify key genes associated with UTI development, offering potential targets for interventions.</p><p><strong>Materials and methods: </strong>For this study, the microarray dataset GSE124917 from the Gene Expression Omnibus (GEO) database was selected and reanalyzed. The differentially expressed genes (DEGs) between UTIs and healthy samples were identified using the LIMMA package in R software. In this section, Enrichr database was utilized to perform functional enrichment analysis of DEGs. Subsequently, the protein-protein interaction (PPI) network of the DEGs was constructed and visualized through Cytoscape, utilizing the STRING online database. The identification of hub genes was performed using Cytoscape's cytoHubba plug-in employing various methods. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic accuracy of hub genes.</p><p><strong>Results: </strong>Among the outcomes of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the tumor necrosis factor (TNF) signaling pathway was identified as one of the notable pathways. The PPI network of the DEGs was successfully established and visualized in Cytoscape with the aid of the STRING online database. Using cytoHubba with different methods, we identified seven hub genes (STAT1, IL6, IFIT1, IFIT3, IFIH1, MX1, and IRF7). Based on the ROC analysis, all hub genes showed high diagnostic value.</p><p><strong>Conclusion: </strong>These findings provide a valuable baseline for future research aimed at unraveling the intricate molecular mechanisms behind UTI.</p>","PeriodicalId":94292,"journal":{"name":"Advanced biomedical research","volume":"13 ","pages":"44"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biomedical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/abr.abr_355_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Urinary tract infections (UTIs) are a widespread health concern with high recurrence rates and substantial economic impact, and they can increase the prevalence of antibiotic resistance. This study employed an integrated bioinformatics approach to identify key genes associated with UTI development, offering potential targets for interventions.

Materials and methods: For this study, the microarray dataset GSE124917 from the Gene Expression Omnibus (GEO) database was selected and reanalyzed. The differentially expressed genes (DEGs) between UTIs and healthy samples were identified using the LIMMA package in R software. In this section, Enrichr database was utilized to perform functional enrichment analysis of DEGs. Subsequently, the protein-protein interaction (PPI) network of the DEGs was constructed and visualized through Cytoscape, utilizing the STRING online database. The identification of hub genes was performed using Cytoscape's cytoHubba plug-in employing various methods. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic accuracy of hub genes.

Results: Among the outcomes of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the tumor necrosis factor (TNF) signaling pathway was identified as one of the notable pathways. The PPI network of the DEGs was successfully established and visualized in Cytoscape with the aid of the STRING online database. Using cytoHubba with different methods, we identified seven hub genes (STAT1, IL6, IFIT1, IFIT3, IFIH1, MX1, and IRF7). Based on the ROC analysis, all hub genes showed high diagnostic value.

Conclusion: These findings provide a valuable baseline for future research aimed at unraveling the intricate molecular mechanisms behind UTI.

揭示尿路感染的潜在生物标记物:综合生物信息学方法。
背景:尿路感染(UTI)是一个普遍存在的健康问题,复发率高,对经济造成重大影响,而且会增加抗生素耐药性的流行。本研究采用了一种综合生物信息学方法来确定与UTI发展相关的关键基因,为干预措施提供潜在目标:本研究选择并重新分析了基因表达总库(GEO)数据库中的微阵列数据集 GSE124917。使用 R 软件中的 LIMMA 软件包确定了UTI 与健康样本之间的差异表达基因(DEGs)。本节利用 Enrichr 数据库对 DEGs 进行功能富集分析。随后,利用 STRING 在线数据库,通过 Cytoscape 构建并可视化 DEGs 的蛋白质-蛋白质相互作用(PPI)网络。利用 Cytoscape 的 cytoHubba 插件,采用多种方法对枢纽基因进行了识别。为评估中枢基因的诊断准确性,进行了接收者操作特征(ROC)分析:结果:在《京都基因组百科全书》(KEGG)通路分析结果中,肿瘤坏死因子(TNF)信号通路被确定为显著通路之一。借助 STRING 在线数据库,在 Cytoscape 中成功建立并可视化了 DEGs 的 PPI 网络。通过使用不同方法的 cytoHubba,我们确定了七个枢纽基因(STAT1、IL6、IFIT1、IFIT3、IFIH1、MX1 和 IRF7)。根据 ROC 分析,所有枢纽基因都具有很高的诊断价值:这些发现为今后旨在揭示UTI背后错综复杂的分子机制的研究提供了宝贵的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信