Yunyun Xue , Chuyao Wang , Yu Zhao , Zihao Zhao , Ronglu Cui , Bin Du , Lifeng Fang , Jianyu Wang , Baoku Zhu
{"title":"Mixed-charge hyperbranched polymer nanoparticles with selective antibacterial action for fighting antimicrobial resistance","authors":"Yunyun Xue , Chuyao Wang , Yu Zhao , Zihao Zhao , Ronglu Cui , Bin Du , Lifeng Fang , Jianyu Wang , Baoku Zhu","doi":"10.1016/j.actbio.2024.08.044","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating menace of antimicrobial resistance (AMR) presents a profound global threat to life and assets. However, the incapacity of metal ions/reactive oxygen species (ROS) or the indiscriminate intrinsic interaction of cationic groups to distinguish between bacteria and mammalian cells undermines the essential selectivity required in these nanomaterials for an ideal antimicrobial agent. Hence, we devised and synthesized a range of biocompatible mixed-charge hyperbranched polymer nanoparticles (MCHPNs) incorporating cationic, anionic, and neutral alkyl groups to effectively combat multidrug-resistant bacteria and mitigate AMR. This outcome stemmed from the structural, antibacterial activity, and biocompatibility analysis of seven MCHPNs, among which MCHPN7, with a ratio of cationic groups, anionic groups, and long alkyl chains at 27:59:14, emerged as the lead candidate. Importantly, owing to inherent differences in membrane potential among diverse species, alongside its nano-size (6–15 nm) and high hydrophilicity (<em>K<sub>ow</sub></em> = 0.04), MCHPN7 exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index > 564) in vitro and in vivo. By inducing physical membrane disruption, MCHPN7 effectively eradicated antibiotic-resistant bacteria and significantly delayed the emergence of bacterial resistance. Utilized as a coating, MCHPN7 endowed initially inert surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses in mouse models. This research heralds the advent of biocompatible polymer nanoparticles and harbors significant implications in our ongoing combat against AMR.</div></div><div><h3>Statement of significance</h3><div>The escalating prevalence of antimicrobial resistance (AMR) has been acknowledged as one of the most significant threats to global health.</div><div>Therefore, a series of mixed-charge hyperbranched polymer nanoparticles (MCHPNs) with selective antibacterial action were designed and synthesized. Owing to inherent differences in membrane potential among diverse species and high hydrophilicity (<em>K<sub>ow</sub></em> = 0.04), the optimal nanoparticles exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index >564) and significantly delayed the emergence of bacterial resistance. Importantly, they endowed surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses.</div><div>Furthermore, the above findings focus on addressing the problem of AMR in Post-Pandemic, which will for sure attract attention from both academic and industry research.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"189 ","pages":"Pages 545-558"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124004896","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating menace of antimicrobial resistance (AMR) presents a profound global threat to life and assets. However, the incapacity of metal ions/reactive oxygen species (ROS) or the indiscriminate intrinsic interaction of cationic groups to distinguish between bacteria and mammalian cells undermines the essential selectivity required in these nanomaterials for an ideal antimicrobial agent. Hence, we devised and synthesized a range of biocompatible mixed-charge hyperbranched polymer nanoparticles (MCHPNs) incorporating cationic, anionic, and neutral alkyl groups to effectively combat multidrug-resistant bacteria and mitigate AMR. This outcome stemmed from the structural, antibacterial activity, and biocompatibility analysis of seven MCHPNs, among which MCHPN7, with a ratio of cationic groups, anionic groups, and long alkyl chains at 27:59:14, emerged as the lead candidate. Importantly, owing to inherent differences in membrane potential among diverse species, alongside its nano-size (6–15 nm) and high hydrophilicity (Kow = 0.04), MCHPN7 exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index > 564) in vitro and in vivo. By inducing physical membrane disruption, MCHPN7 effectively eradicated antibiotic-resistant bacteria and significantly delayed the emergence of bacterial resistance. Utilized as a coating, MCHPN7 endowed initially inert surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses in mouse models. This research heralds the advent of biocompatible polymer nanoparticles and harbors significant implications in our ongoing combat against AMR.
Statement of significance
The escalating prevalence of antimicrobial resistance (AMR) has been acknowledged as one of the most significant threats to global health.
Therefore, a series of mixed-charge hyperbranched polymer nanoparticles (MCHPNs) with selective antibacterial action were designed and synthesized. Owing to inherent differences in membrane potential among diverse species and high hydrophilicity (Kow = 0.04), the optimal nanoparticles exhibited exceptional selective bactericidal effects over mammalian cells (selectivity index >564) and significantly delayed the emergence of bacterial resistance. Importantly, they endowed surfaces with the ability to impede biofilm formation and mitigate infection-related immune responses.
Furthermore, the above findings focus on addressing the problem of AMR in Post-Pandemic, which will for sure attract attention from both academic and industry research.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.