A Big Data and FRAM-Based Model for Epidemic Risk Analysis of Infectious Diseases.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.2147/RMHP.S476794
Junhua Zhu, Yue Zhuang, Wenjing Li
{"title":"A Big Data and FRAM-Based Model for Epidemic Risk Analysis of Infectious Diseases.","authors":"Junhua Zhu, Yue Zhuang, Wenjing Li","doi":"10.2147/RMHP.S476794","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The use of multi-source precursor data to predict the epidemic risk level would aid in the early and timely identification of the epidemic risk of infectious diseases. To achieve this, a new comprehensive big data fusion assessment method must be developed.</p><p><strong>Methods: </strong>With the help of the Functional Resonance Analysis Method (FRAM) model, this paper proposes a risk portrait for the whole process of a pandemic spreading. Using medical, human behaviour, internet and geo-meteorological data, a hierarchical multi-source dataset was developed with three function module tags, ie, Basic Risk Factors (BRF), the Spread of Epidemic Threats (SET) and Risk Influencing Factors (RIF).</p><p><strong>Results: </strong>Using the dynamic functional network diagram of the risk assessment functional module, the FRAM portrait was applied to pandemic case analysis in Wuhan in 2020. This new-format FRAM portrait model offers a potential early and rapid risk assessment method that could be applied in future acute public health events.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S476794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The use of multi-source precursor data to predict the epidemic risk level would aid in the early and timely identification of the epidemic risk of infectious diseases. To achieve this, a new comprehensive big data fusion assessment method must be developed.

Methods: With the help of the Functional Resonance Analysis Method (FRAM) model, this paper proposes a risk portrait for the whole process of a pandemic spreading. Using medical, human behaviour, internet and geo-meteorological data, a hierarchical multi-source dataset was developed with three function module tags, ie, Basic Risk Factors (BRF), the Spread of Epidemic Threats (SET) and Risk Influencing Factors (RIF).

Results: Using the dynamic functional network diagram of the risk assessment functional module, the FRAM portrait was applied to pandemic case analysis in Wuhan in 2020. This new-format FRAM portrait model offers a potential early and rapid risk assessment method that could be applied in future acute public health events.

基于大数据和 FRAM 的传染病流行风险分析模型。
目的:利用多源前兆数据预测疫情风险水平有助于及早、及时地识别传染病的疫情风险。为此,必须开发一种新的综合性大数据融合评估方法:本文借助功能共振分析法(FRAM)模型,提出了疫情传播全过程的风险画像。方法:本文借助功能共振分析法(FRAM)模型,提出了大流行病传播全过程的风险画像。利用医疗、人类行为、互联网和地理气象数据,开发了一个分层多源数据集,其中包含三个功能模块标签,即基本风险因素(BRF)、流行病威胁传播(SET)和风险影响因素(RIF):利用风险评估功能模块的动态功能网络图,将 FRAM 画像应用于 2020 年武汉大流行病例分析。这种新形式的 FRAM 肖像模型提供了一种潜在的早期快速风险评估方法,可应用于未来的急性公共卫生事件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信