Y Kim, K D Meaney, R J Leeper, S H Batha, H J Jorgenson, T S Perry, R H Dwyer, T R Schmidt, M P Hochanadel, J R Sweeney, T N Archuleta, B White, R Richardson, J A Green, A J Wolverton, A Guckes, D R Lowe, M Showers, C A Willis, M D Butcher
{"title":"Relative sensitivity of plastic scintillator: A comparative analysis with 60Co gamma rays, deuterium-deuterium, and deuterium-tritium neutrons.","authors":"Y Kim, K D Meaney, R J Leeper, S H Batha, H J Jorgenson, T S Perry, R H Dwyer, T R Schmidt, M P Hochanadel, J R Sweeney, T N Archuleta, B White, R Richardson, J A Green, A J Wolverton, A Guckes, D R Lowe, M Showers, C A Willis, M D Butcher","doi":"10.1063/5.0218496","DOIUrl":null,"url":null,"abstract":"<p><p>A plastic scintillator has found extensive application in the realm of high-energy physics and national security science. Many applications in those fields often involve the simultaneous production of photons, neutrons, and charged particles, which makes the relative sensitivity information for these different radiation types important. In this study, we have adopted a multi-head detector comprised of a plastic scintillator and high gain phototubes, which provides a large dynamic range and linearity. A comparative study on the relative sensitivities of plastic scintillators was facilitated by adopting three distinct radiation calibration sources (i.e., 60Co γ rays, DD neutrons, and DT neutrons). Neutrons from a DD source generate a comparable level of scintillation to gamma rays emitted by 60Co (i.e., 60Co-γ/DD-n = 0.92 ± 16%). DT neutrons induce ∼3.5 times the scintillation observed with DD neutrons (i.e., DT-n/DD-n = 3.5 ± 28%). In addition, the Geant4 simulation granted us valuable insights into the relative sensitivity of the scintillator. This comparative study will provide a useful database for users in diverse applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218496","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A plastic scintillator has found extensive application in the realm of high-energy physics and national security science. Many applications in those fields often involve the simultaneous production of photons, neutrons, and charged particles, which makes the relative sensitivity information for these different radiation types important. In this study, we have adopted a multi-head detector comprised of a plastic scintillator and high gain phototubes, which provides a large dynamic range and linearity. A comparative study on the relative sensitivities of plastic scintillators was facilitated by adopting three distinct radiation calibration sources (i.e., 60Co γ rays, DD neutrons, and DT neutrons). Neutrons from a DD source generate a comparable level of scintillation to gamma rays emitted by 60Co (i.e., 60Co-γ/DD-n = 0.92 ± 16%). DT neutrons induce ∼3.5 times the scintillation observed with DD neutrons (i.e., DT-n/DD-n = 3.5 ± 28%). In addition, the Geant4 simulation granted us valuable insights into the relative sensitivity of the scintillator. This comparative study will provide a useful database for users in diverse applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.