Solution-based biophysical characterization of conformation change in structure-switching aptamers.

IF 7.2 2区 生物学 Q1 BIOPHYSICS
Sophie R Eisen, Philippe Dauphin-Ducharme, Philip E Johnson
{"title":"Solution-based biophysical characterization of conformation change in structure-switching aptamers.","authors":"Sophie R Eisen, Philippe Dauphin-Ducharme, Philip E Johnson","doi":"10.1017/S0033583524000076","DOIUrl":null,"url":null,"abstract":"<p><p>Structure-switching aptamers have become ubiquitous in several applications, notably in analytical devices such as biosensors, due to their ease of supporting strong signaling. Aside from their ability to bind specifically with their respective target, this class of aptamers also undergoes a conformational rearrangement upon target recognition. While several well-studied and early-developed aptamers (e.g., cocaine, ATP, and thrombin) have been found to have this structure-switching property, the vast majority do not. As a result, it is common to try to engineer aptamers into switches. This proves challenging in part because of the difficulty in obtaining structural and functional information about aptamers. In response, we review various readily available biophysical characterization tools that are capable of assessing structure switching of aptamers. In doing so, we delve into the fundamentals of these different techniques and detail how they have been utilized in characterizing structure-switching aptamers. While each of these biophysical techniques alone has utility, their real power to demonstrate the occurrence of structural change with ligand binding is when multiple techniques are used. We hope that through a deeper understanding of these techniques, researchers will be better able to acquire biophysical information about their aptamer-ligand systems and accelerate the translation of aptamers into biosensors.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":" ","pages":"e9"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583524000076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Structure-switching aptamers have become ubiquitous in several applications, notably in analytical devices such as biosensors, due to their ease of supporting strong signaling. Aside from their ability to bind specifically with their respective target, this class of aptamers also undergoes a conformational rearrangement upon target recognition. While several well-studied and early-developed aptamers (e.g., cocaine, ATP, and thrombin) have been found to have this structure-switching property, the vast majority do not. As a result, it is common to try to engineer aptamers into switches. This proves challenging in part because of the difficulty in obtaining structural and functional information about aptamers. In response, we review various readily available biophysical characterization tools that are capable of assessing structure switching of aptamers. In doing so, we delve into the fundamentals of these different techniques and detail how they have been utilized in characterizing structure-switching aptamers. While each of these biophysical techniques alone has utility, their real power to demonstrate the occurrence of structural change with ligand binding is when multiple techniques are used. We hope that through a deeper understanding of these techniques, researchers will be better able to acquire biophysical information about their aptamer-ligand systems and accelerate the translation of aptamers into biosensors.

基于溶液的结构转换适配体构象变化生物物理表征。
结构转换适配体由于易于支持强烈的信号传递,在一些应用中已变得无处不在,特别是在生物传感器等分析设备中。除了能与各自的目标物特异性结合外,这类适配体在识别目标物时还会发生构象重排。虽然有几种研究得较好且开发较早的适配体(如可卡因、ATP 和凝血酶)被发现具有这种结构转换特性,但绝大多数适配体并不具备这种特性。因此,人们通常尝试将适配体设计成开关。这证明具有挑战性,部分原因是难以获得有关适配体的结构和功能信息。为此,我们回顾了各种现成的生物物理表征工具,这些工具能够评估适配体的结构开关。在此过程中,我们深入探讨了这些不同技术的基本原理,并详细介绍了如何利用它们来表征结构转换适配体。虽然这些生物物理技术中的每一种都有其单独的用途,但它们真正能证明配体结合时发生的结构变化是在使用多种技术的情况下。我们希望通过加深对这些技术的理解,研究人员能够更好地获取其适配体-配体系统的生物物理信息,并加速将适配体转化为生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信