Production of milk-coagulating protease by fungus Pleurotus djamor through solid state fermentation using wheat bran as the low-cost substrate.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Monizy da Costa Silva, Ricardo Bezerra Costa, Josiel Santos do Nascimento, Marta Maria Oliveira Dos Santos Gomes, Alexsandra Nascimento Ferreira, Luciano Aparecido Meireles Grillo, José Maria Rodrigues da Luz, Francis Soares Gomes, Hugo Juarez Vieira Pereira
{"title":"Production of milk-coagulating protease by fungus <i>Pleurotus djamor</i> through solid state fermentation using wheat bran as the low-cost substrate.","authors":"Monizy da Costa Silva, Ricardo Bezerra Costa, Josiel Santos do Nascimento, Marta Maria Oliveira Dos Santos Gomes, Alexsandra Nascimento Ferreira, Luciano Aparecido Meireles Grillo, José Maria Rodrigues da Luz, Francis Soares Gomes, Hugo Juarez Vieira Pereira","doi":"10.1080/10826068.2024.2399040","DOIUrl":null,"url":null,"abstract":"<p><p>Proteases are enzymes that hydrolyze peptide bonds present in proteins and peptides. They are widely used for various industrial applications, such as in the detergent, food, and dairy industries. Cheese is one of the most important products of the dairy industry, and the coagulation stage is crucial during the cheese-making process. Enzymatic coagulation is the most common technique utilized for this purpose. Microbial enzymes are frequently used for coagulation due to their advantages in terms of availability, sustainability, quality control, product variety, and compliance with dietary and cultural/religious requirements. In the present study, we identified and subsequently characterized milk coagulant activity from the fungus <i>Pleurotus djamor</i> PLO13, obtained during a solid-state fermentation process, using the agro-industrial residue, wheat bran, as the fermentation medium. Maximum enzyme production and caseinolytic activity occurred 120 h after cultivation. When the enzyme activity against various protease-specific synthetic substrates and inhibitors was analyzed, the enzyme was found to be a serine protease, similar to elastase 2. This elastase-2-like serine protease was able to coagulate pasteurized whole and reconstituted skim milk highly efficiently in the presence and absence of calcium, even at room temperature. The coagulation process was influenced by factors such as temperature, time, and calcium concentration. We demonstrate here, for the first time, an elastase-2-like enzyme in a microorganism and its potential application in the food industry for cheese production.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2399040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteases are enzymes that hydrolyze peptide bonds present in proteins and peptides. They are widely used for various industrial applications, such as in the detergent, food, and dairy industries. Cheese is one of the most important products of the dairy industry, and the coagulation stage is crucial during the cheese-making process. Enzymatic coagulation is the most common technique utilized for this purpose. Microbial enzymes are frequently used for coagulation due to their advantages in terms of availability, sustainability, quality control, product variety, and compliance with dietary and cultural/religious requirements. In the present study, we identified and subsequently characterized milk coagulant activity from the fungus Pleurotus djamor PLO13, obtained during a solid-state fermentation process, using the agro-industrial residue, wheat bran, as the fermentation medium. Maximum enzyme production and caseinolytic activity occurred 120 h after cultivation. When the enzyme activity against various protease-specific synthetic substrates and inhibitors was analyzed, the enzyme was found to be a serine protease, similar to elastase 2. This elastase-2-like serine protease was able to coagulate pasteurized whole and reconstituted skim milk highly efficiently in the presence and absence of calcium, even at room temperature. The coagulation process was influenced by factors such as temperature, time, and calcium concentration. We demonstrate here, for the first time, an elastase-2-like enzyme in a microorganism and its potential application in the food industry for cheese production.

以麦麸为低成本底物,通过固态发酵法利用真菌 Pleurotus djamor 生产凝乳蛋白酶。
蛋白酶是一种能水解蛋白质和肽中肽键的酶。它们广泛应用于各种工业领域,如洗涤剂、食品和乳制品行业。奶酪是乳制品行业最重要的产品之一,而凝固阶段在奶酪制作过程中至关重要。为此,酶凝是最常用的技术。微生物酶因其在可用性、可持续性、质量控制、产品多样性以及符合饮食和文化/宗教要求等方面的优势,经常被用于凝固。在本研究中,我们发现了真菌 Pleurotus djamor PLO13 的牛奶凝固剂活性,并对其进行了表征。最大产酶量和酪蛋白溶解活性出现在培养 120 小时后。在分析酶对各种蛋白酶特异性合成底物和抑制剂的活性时,发现该酶是一种丝氨酸蛋白酶,类似于弹性蛋白酶 2。这种类似弹性蛋白酶 2 的丝氨酸蛋白酶在有钙和无钙的情况下,甚至在室温下都能高效凝固巴氏杀菌全脂奶和重组脱脂奶。凝固过程受温度、时间和钙浓度等因素的影响。我们在此首次展示了微生物中的弹性蛋白酶-2 类酶及其在食品工业奶酪生产中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信