Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang
{"title":"MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen.","authors":"Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang","doi":"10.1111/ppl.14498","DOIUrl":null,"url":null,"abstract":"<p><p>Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14498","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.