Running-induced neurogenesis reduces CA1 perineuronal net density without substantial temporal delay.

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Dylan J Terstege, Duneesha Goonetilleke, Cindy K Barha, Jonathan R Epp
{"title":"Running-induced neurogenesis reduces CA1 perineuronal net density without substantial temporal delay.","authors":"Dylan J Terstege, Duneesha Goonetilleke, Cindy K Barha, Jonathan R Epp","doi":"10.1186/s13041-024-01138-x","DOIUrl":null,"url":null,"abstract":"<p><p>Aerobic exercise has many effects on brain function, particularly at the hippocampus. Exercise has been shown to increase the rate of adult neurogenesis within the dentate gyrus and decrease the density of perineuronal nets in area CA1. The relationship between the rate of neurogenesis and the density of perineuronal nets in CA1 is robust; however, these studies only ever examined these effects across longer time scales, with running manipulations of 4 weeks or longer. With such long periods of manipulation, the precise temporal nature of the relationship between running-induced neurogenesis and reduced perineuronal net density in CA1 is unknown. Here, we provided male and female mice with home cage access to running wheels for 0, 1, 2, or 4 weeks and quantified hippocampal neurogenesis and CA1 perineuronal net density. In doing so, we observed a 2-week delay period prior to the increase in neurogenesis, which coincided with the same delay prior to decreased CA1 perineuronal net density. These results highlight the closely linked temporal relationship between running-induced neurogenesis and decreased perineuronal net expression in CA1.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01138-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aerobic exercise has many effects on brain function, particularly at the hippocampus. Exercise has been shown to increase the rate of adult neurogenesis within the dentate gyrus and decrease the density of perineuronal nets in area CA1. The relationship between the rate of neurogenesis and the density of perineuronal nets in CA1 is robust; however, these studies only ever examined these effects across longer time scales, with running manipulations of 4 weeks or longer. With such long periods of manipulation, the precise temporal nature of the relationship between running-induced neurogenesis and reduced perineuronal net density in CA1 is unknown. Here, we provided male and female mice with home cage access to running wheels for 0, 1, 2, or 4 weeks and quantified hippocampal neurogenesis and CA1 perineuronal net density. In doing so, we observed a 2-week delay period prior to the increase in neurogenesis, which coincided with the same delay prior to decreased CA1 perineuronal net density. These results highlight the closely linked temporal relationship between running-induced neurogenesis and decreased perineuronal net expression in CA1.

奔跑诱导的神经发生降低了CA1神经元周围的净密度,但没有明显的时间延迟。
有氧运动对大脑功能有许多影响,尤其是对海马体。研究表明,运动能提高齿状回内成年神经发生的速度,降低 CA1 区神经元周围网的密度。CA1区的神经发生率和神经元周围网密度之间的关系非常密切;然而,这些研究只在较长的时间尺度内对这些影响进行了研究,即进行了4周或更长时间的跑步操作。在如此长时间的操作下,跑步诱导的神经发生与 CA1 中神经元周围网密度降低之间关系的确切时间性质尚不清楚。在这里,我们让雄性和雌性小鼠在家笼中接触跑步轮 0、1、2 或 4 周,并量化了海马神经发生和 CA1 神经元周围网密度。在此过程中,我们观察到在神经发生增加之前有2周的延迟期,这与CA1神经元周围网密度降低之前的延迟期相同。这些结果突显了跑步诱导的神经发生与CA1神经元周围网表达减少之间密切的时间关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信