{"title":"A few-shot learning framework for the diagnosis of osteopenia and osteoporosis using knee X-ray images.","authors":"Hua Xie, Chenqi Gu, Wenchao Zhang, Jiacheng Zhu, Jin He, Zhou Huang, Jinzhou Zhu, Zhonghua Xu","doi":"10.1177/03000605241274576","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We developed a few-shot learning (FSL) framework for the diagnosis of osteopenia and osteoporosis in knee X-ray images.</p><p><strong>Methods: </strong>Computer vision models containing deep convolutional neural networks were fine-tuned to enable generalization from natural images (ImageNet) to chest X-ray images (normal vs. pneumonia, base images). Then, a series of automated machine learning classifiers based on the Euclidean distances of base images were developed to make predictions for novel images (normal vs. osteopenia vs. osteoporosis). The performance of the FSL framework was compared with that of junior and senior radiologists. In addition, the gradient-weighted class activation mapping algorithm was used for visual interpretation.</p><p><strong>Results: </strong>In Cohort #1, the mean accuracy (0.728) and sensitivity (0.774) of the FSL models were higher than those of the radiologists (0.512 and 0.448). A diagnostic pipeline of FSL model (first)-radiologists (second) achieved better performance (0.653 accuracy, 0.582 sensitivity, and 0.816 specificity) than radiologists alone. In Cohort #2, the diagnostic pipeline also showed improved performance.</p><p><strong>Conclusions: </strong>The FSL framework yielded practical performance with respect to the diagnosis of osteopenia and osteoporosis in comparison with radiologists. This retrospective study supports the use of promising FSL methods in computer-aided diagnosis tasks involving limited samples.</p>","PeriodicalId":16129,"journal":{"name":"Journal of International Medical Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03000605241274576","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We developed a few-shot learning (FSL) framework for the diagnosis of osteopenia and osteoporosis in knee X-ray images.
Methods: Computer vision models containing deep convolutional neural networks were fine-tuned to enable generalization from natural images (ImageNet) to chest X-ray images (normal vs. pneumonia, base images). Then, a series of automated machine learning classifiers based on the Euclidean distances of base images were developed to make predictions for novel images (normal vs. osteopenia vs. osteoporosis). The performance of the FSL framework was compared with that of junior and senior radiologists. In addition, the gradient-weighted class activation mapping algorithm was used for visual interpretation.
Results: In Cohort #1, the mean accuracy (0.728) and sensitivity (0.774) of the FSL models were higher than those of the radiologists (0.512 and 0.448). A diagnostic pipeline of FSL model (first)-radiologists (second) achieved better performance (0.653 accuracy, 0.582 sensitivity, and 0.816 specificity) than radiologists alone. In Cohort #2, the diagnostic pipeline also showed improved performance.
Conclusions: The FSL framework yielded practical performance with respect to the diagnosis of osteopenia and osteoporosis in comparison with radiologists. This retrospective study supports the use of promising FSL methods in computer-aided diagnosis tasks involving limited samples.
期刊介绍:
_Journal of International Medical Research_ is a leading international journal for rapid publication of original medical, pre-clinical and clinical research, reviews, preliminary and pilot studies on a page charge basis.
As a service to authors, every article accepted by peer review will be given a full technical edit to make papers as accessible and readable to the international medical community as rapidly as possible.
Once the technical edit queries have been answered to the satisfaction of the journal, the paper will be published and made available freely to everyone under a creative commons licence.
Symposium proceedings, summaries of presentations or collections of medical, pre-clinical or clinical data on a specific topic are welcome for publication as supplements.
Print ISSN: 0300-0605