Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Luyang Wang, Le Tong, Zecheng Xiong, Yi Chen, Ping Zhang, Yan Gao, Jing Liu, Lei Yang, Chunqi Huang, Gaoqi Ye, Jing Du, Huibiao Liu, Wei Yang, Ying Wang
{"title":"Ferroptosis-inducing nanomedicine and targeted short peptide for synergistic treatment of hepatocellular carcinoma.","authors":"Luyang Wang, Le Tong, Zecheng Xiong, Yi Chen, Ping Zhang, Yan Gao, Jing Liu, Lei Yang, Chunqi Huang, Gaoqi Ye, Jing Du, Huibiao Liu, Wei Yang, Ying Wang","doi":"10.1186/s12951-024-02808-7","DOIUrl":null,"url":null,"abstract":"<p><p>The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe<sup>2+</sup> (DOX-Fe<sup>2+</sup>), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe<sup>2+</sup>/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02808-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe2+ (DOX-Fe2+), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe2+/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.

诱导铁突变的纳米药物和靶向短肽协同治疗肝细胞癌。
肝细胞癌(HCC)预后不良,仍是全球亟待解决的难题。因此,将药物和靶向短肽组合在一起,构建一种新型的给药策略,对于HCC的靶向协同治疗至关重要。本文以氧化二乙烯石墨(GDYO)为载药平台,以靶向HCC细胞的特异性多肽(SP94-PEG)为矛,以索拉非尼(Sorafenib)、多柔比星-Fe2+(DOX-Fe2+)和siRNA(SLC7A11-i)为武器,构建了一种高效的纳米药物递送策略,对HCC细胞进行三路径协同攻击。在这项工作中,SP94-PEG和GDYO形成了具有HCC靶向特性的纳米片,与亚铁离子相连的化疗药物DOX增加了HCC细胞中的游离铁库,并与索拉非尼协同诱导细胞铁变态反应。SLC7A11是铁凋亡的关键基因,干扰SLC7A11的表达会使HCC细胞的铁凋亡作用更容易、更强烈、更持久。通过基因干扰、药物协同和短肽靶向,可以减少化疗药物的毒副作用。多功能纳米药物GDYO@SP94/DOX-Fe2+/索拉非尼/SLC7A11-i(MNMG)具有靶向性强、稳定性好、能持续诱导肿瘤细胞铁蛋白沉降等优点,与传统药物不同,具有潜在的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信