A preliminary study of the mechanical properties of 3D-printed personalized mesh titanium alloy prostheses and repair of hemi-mandibular defect in dogs
Bingjing Zhao, Hong Wang, Changkui Liu, Huawei Liu, Xiaowen Zhao, Zenghui Sun, Min Hu
{"title":"A preliminary study of the mechanical properties of 3D-printed personalized mesh titanium alloy prostheses and repair of hemi-mandibular defect in dogs","authors":"Bingjing Zhao, Hong Wang, Changkui Liu, Huawei Liu, Xiaowen Zhao, Zenghui Sun, Min Hu","doi":"10.1002/jbm.b.35466","DOIUrl":null,"url":null,"abstract":"<p>This study is a preliminary investigation exploring the mechanical properties of three-dimensional (3D)-printed personalized mesh titanium alloy prostheses and the feasibility of repairing hemi-mandibular defects. The ANSYS 14.0 software and selective laser melting (SLM) were used to produce personalized mesh titanium alloy scaffolds. Scaffolds printed using different parameters underwent fatigue property tests and scanning electron microscopy (SEM) of the fracture points. Models of hemi-mandibular defects (encompassing the temporomandibular joint) were created using beagle dogs. Freeze–dried allogeneic mandibles or 3D-printed personalized mesh titanium alloy prostheses were used for repair. Gross observation, computed tomography (CT), SEM, and histological examinations were used to compare the two repair methods. The prostheses with filament diameters of 0.5 and 0.7 mm could withstand 14,000 times and >600,000 cycles of alternating stresses, respectively. The truss-structure scaffold with a large aperture and large aperture ratio could withstand roughly 250,000 cycles of alternating forces. The allogeneic mandible graft required intraoperative shaping, while the 3D-printed mesh titanium alloy prostheses were personalized and did not require intraoperative shaping. The articular disc on the non-operated sides experienced degenerative changes. No liver and kidney toxicity was observed in the two groups of animals. The 3D-printed mesh titanium alloy prostheses could effectively restore the shape of the mandibular defect region and reconstruct the temporomandibular joint.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35466","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study is a preliminary investigation exploring the mechanical properties of three-dimensional (3D)-printed personalized mesh titanium alloy prostheses and the feasibility of repairing hemi-mandibular defects. The ANSYS 14.0 software and selective laser melting (SLM) were used to produce personalized mesh titanium alloy scaffolds. Scaffolds printed using different parameters underwent fatigue property tests and scanning electron microscopy (SEM) of the fracture points. Models of hemi-mandibular defects (encompassing the temporomandibular joint) were created using beagle dogs. Freeze–dried allogeneic mandibles or 3D-printed personalized mesh titanium alloy prostheses were used for repair. Gross observation, computed tomography (CT), SEM, and histological examinations were used to compare the two repair methods. The prostheses with filament diameters of 0.5 and 0.7 mm could withstand 14,000 times and >600,000 cycles of alternating stresses, respectively. The truss-structure scaffold with a large aperture and large aperture ratio could withstand roughly 250,000 cycles of alternating forces. The allogeneic mandible graft required intraoperative shaping, while the 3D-printed mesh titanium alloy prostheses were personalized and did not require intraoperative shaping. The articular disc on the non-operated sides experienced degenerative changes. No liver and kidney toxicity was observed in the two groups of animals. The 3D-printed mesh titanium alloy prostheses could effectively restore the shape of the mandibular defect region and reconstruct the temporomandibular joint.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.