Ting Yang, Yan Tang, Xinghua Liu, Song Gong, Ensheng Yao
{"title":"Microglia synchronizes with the circadian rhythm of the glymphatic system and modulates glymphatic system function.","authors":"Ting Yang, Yan Tang, Xinghua Liu, Song Gong, Ensheng Yao","doi":"10.1002/iub.2903","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, as immune cells in the central nervous system, possess the ability to adapt morphologically and functionally to their environment. Glymphatic system, the principal waste clearance system in the brain, exhibits circadian rhythms. However, the impact of microglia on the glymphatic system function remains unknown. In this study, we explored the intricate relationship between microglia and the glymphatic system. Examining diurnal patterns, we identified synchronized behaviors in glymphatic activity and microglial morphology, peaking during sleep and exhibiting distinct changes in branching complexity. Depleting microglia using PLX5622 or in P2Y12 knockout mice enhanced glymphatic function. Chemogenetic manipulation of microglia demonstrated that activating HM3D improved glymphatic function, while inhibiting HM4D unexpectedly increased microglial complexity. These findings highlight the dynamic influence of microglia on the glymphatic system.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUBMB Life","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/iub.2903","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia, as immune cells in the central nervous system, possess the ability to adapt morphologically and functionally to their environment. Glymphatic system, the principal waste clearance system in the brain, exhibits circadian rhythms. However, the impact of microglia on the glymphatic system function remains unknown. In this study, we explored the intricate relationship between microglia and the glymphatic system. Examining diurnal patterns, we identified synchronized behaviors in glymphatic activity and microglial morphology, peaking during sleep and exhibiting distinct changes in branching complexity. Depleting microglia using PLX5622 or in P2Y12 knockout mice enhanced glymphatic function. Chemogenetic manipulation of microglia demonstrated that activating HM3D improved glymphatic function, while inhibiting HM4D unexpectedly increased microglial complexity. These findings highlight the dynamic influence of microglia on the glymphatic system.
期刊介绍:
IUBMB Life is the flagship journal of the International Union of Biochemistry and Molecular Biology and is devoted to the rapid publication of the most novel and significant original research articles, reviews, and hypotheses in the broadly defined fields of biochemistry, molecular biology, cell biology, and molecular medicine.