Melatonin attenuates affective disorders and cognitive deficits induced by perinatal exposure to a glyphosate-based herbicide via antioxidant pathway in adult male and female rats
Abdelghafour El Hamzaoui, Mouloud Lamtai, Mohamed Yassine El Brouzi, Sofia Azirar, Ayoub Rezqaoui, Oussama Zghari, Mustapha El Aoufi, Rihab Nouar, Aboubaker El-Hessni, Abdelhalem Mesfioui
{"title":"Melatonin attenuates affective disorders and cognitive deficits induced by perinatal exposure to a glyphosate-based herbicide via antioxidant pathway in adult male and female rats","authors":"Abdelghafour El Hamzaoui, Mouloud Lamtai, Mohamed Yassine El Brouzi, Sofia Azirar, Ayoub Rezqaoui, Oussama Zghari, Mustapha El Aoufi, Rihab Nouar, Aboubaker El-Hessni, Abdelhalem Mesfioui","doi":"10.1002/jdn.10374","DOIUrl":null,"url":null,"abstract":"<p>The massive use of herbicides, particularly glyphosate-based herbicides (GBHs), raises several worries, notably their neurotoxic effects. Several studies have explored the consequences of developmental exposure. Our work aims to determine the impact of maternal exposure to GBH on behavioral disorders and memory deficits, as well as the involvement of oxidative stress in the hippocampus and prefrontal cortex. In addition, our study explores the neuroprotective properties of melatonin in male and female offspring. Pregnant Wistar rats were injected with GBH 75 mg/kg during gestation and lactation. After weaning, the offspring were treated with melatonin (4 mg/kg) from postnatal days 30–58. Our results show that GBH increases anxiety-like behavior levels in offspring, as well as depression-like behavior. GBH also impairs working memory in progeny. While markers of oxidative stress show a disturbance in lipid peroxidation and catalase activity, with a more pronounced effect in females, on the other hand, melatonin considerably attenuated the neurotoxic impact observed in the offspring, with higher efficacy in females. The oxidative stress results confirm the antioxidant power of melatonin to counteract the damaging effects of exposure to environmental contaminants such as glyphosate-based pesticides. It will then be interesting to further our work to fully understand the sex-dependent effect of melatonin.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 7","pages":"745-757"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The massive use of herbicides, particularly glyphosate-based herbicides (GBHs), raises several worries, notably their neurotoxic effects. Several studies have explored the consequences of developmental exposure. Our work aims to determine the impact of maternal exposure to GBH on behavioral disorders and memory deficits, as well as the involvement of oxidative stress in the hippocampus and prefrontal cortex. In addition, our study explores the neuroprotective properties of melatonin in male and female offspring. Pregnant Wistar rats were injected with GBH 75 mg/kg during gestation and lactation. After weaning, the offspring were treated with melatonin (4 mg/kg) from postnatal days 30–58. Our results show that GBH increases anxiety-like behavior levels in offspring, as well as depression-like behavior. GBH also impairs working memory in progeny. While markers of oxidative stress show a disturbance in lipid peroxidation and catalase activity, with a more pronounced effect in females, on the other hand, melatonin considerably attenuated the neurotoxic impact observed in the offspring, with higher efficacy in females. The oxidative stress results confirm the antioxidant power of melatonin to counteract the damaging effects of exposure to environmental contaminants such as glyphosate-based pesticides. It will then be interesting to further our work to fully understand the sex-dependent effect of melatonin.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.