Diagnostic accuracy of CT and PET/CT radiomics in predicting lymph node metastasis in non-small cell lung cancer.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
European Radiology Pub Date : 2025-04-01 Epub Date: 2024-09-02 DOI:10.1007/s00330-024-11036-4
Yuepeng Li, Junyue Deng, Xuelei Ma, Weimin Li, Zhoufeng Wang
{"title":"Diagnostic accuracy of CT and PET/CT radiomics in predicting lymph node metastasis in non-small cell lung cancer.","authors":"Yuepeng Li, Junyue Deng, Xuelei Ma, Weimin Li, Zhoufeng Wang","doi":"10.1007/s00330-024-11036-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis.</p><p><strong>Methods: </strong>Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability.</p><p><strong>Results: </strong>Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes.</p><p><strong>Conclusions: </strong>Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary.</p><p><strong>Clinical relevance statement: </strong>Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies.</p><p><strong>Research registration unique identifying number (uin): </strong>International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"1966-1979"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-11036-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis.

Methods: Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability.

Results: Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes.

Conclusions: Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary.

Clinical relevance statement: Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies.

Research registration unique identifying number (uin): International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.

Abstract Image

CT 和 PET/CT 放射组学在预测非小细胞肺癌淋巴结转移方面的诊断准确性。
研究目的本研究评估了放射组学预测非小细胞肺癌淋巴结转移的准确性,这对患者管理和预后至关重要:根据 PRISMA 和 AMSTAR 指南,我们使用 PubMed、Web of Science 和 Embase 等数据库系统地回顾了 2012 年 3 月至 2023 年 12 月期间的文献。纳入了使用计算机断层扫描(CT)和正电子发射断层扫描(PET)/CT成像的放射组学研究。研究质量采用 QUADAS-2 和 RQS 工具进行评估,TRIPOD 核对表评估了模型的透明度。对灵敏度、特异性和AUC值进行综合分析,以确定诊断性能,并通过亚组和灵敏度分析探究异质性,以及通过Fagan图评估临床适用性:我们的分析纳入了 22 项研究的 42 个队列。基于 CT 的放射组学显示灵敏度为 0.84(95% CI:0.79-0.88,P 0.05)。PET/CT 放射组学的灵敏度为 0.82(95% CI:0.76-0.86,P 0.05):放射组学模型显示了预测肺癌淋巴结转移的准确性,但还需要通过更大规模的多中心研究进一步验证:使用 CT 和 PET/CT 成像的放射组学模型可改善肺癌淋巴结转移的预测,有助于制定个性化治疗策略:研究注册唯一识别码(uin):系统综述国际前瞻性注册(PROSPERO),CRD42023494701。本研究已在 PROSPERO 平台注册,注册日期为 2023 年 12 月 18 日。https://www.crd.york.ac.uk/prospero/ 关键要点:该研究探讨了放射组学在肺癌淋巴结转移检测中的应用,这将对手术和预后产生影响。放射组学提高了肺癌淋巴结转移预测的准确性。放射组学有助于肺癌淋巴结转移预测和个性化治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信