{"title":"Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging.","authors":"Xinru Hu, Meng Chen, Jahanzeb Nawaz, Xi Duan","doi":"10.2147/CCID.S478666","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts.</p><p><strong>Methods: </strong>We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines.</p><p><strong>Results: </strong>In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects.</p><p><strong>Conclusion: </strong>The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.</p>","PeriodicalId":10447,"journal":{"name":"Clinical, Cosmetic and Investigational Dermatology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical, Cosmetic and Investigational Dermatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CCID.S478666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts.
Methods: We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines.
Results: In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects.
Conclusion: The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
期刊介绍:
Clinical, Cosmetic and Investigational Dermatology is an international, peer-reviewed, open access journal that focuses on the latest clinical and experimental research in all aspects of skin disease and cosmetic interventions. Normal and pathological processes in skin development and aging, their modification and treatment, as well as basic research into histology of dermal and dermal structures that provide clinical insights and potential treatment options are key topics for the journal.
Patient satisfaction, preference, quality of life, compliance, persistence and their role in developing new management options to optimize outcomes for target conditions constitute major areas of interest.
The journal is characterized by the rapid reporting of clinical studies, reviews and original research in skin research and skin care.
All areas of dermatology will be covered; contributions will be welcomed from all clinicians and basic science researchers globally.