Validation of a direct multiplex real-time reverse transcription PCR assay for rapid detection of African swine fever virus using swine field samples in Vietnam.
Hiroaki Shirafuji, Tatsuya Nishi, Takehiro Kokuho, Hoang Vu Dang, Anh Duc Truong, Tomoya Kitamura, Mizuki Watanabe, Ha Thi Thanh Tran, Kentaro Masujin
{"title":"Validation of a direct multiplex real-time reverse transcription PCR assay for rapid detection of African swine fever virus using swine field samples in Vietnam.","authors":"Hiroaki Shirafuji, Tatsuya Nishi, Takehiro Kokuho, Hoang Vu Dang, Anh Duc Truong, Tomoya Kitamura, Mizuki Watanabe, Ha Thi Thanh Tran, Kentaro Masujin","doi":"10.1186/s13104-024-06898-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study validates a direct multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay which was previously established for enabling rapid and simultaneous detection of African swine fever (ASF) virus (ASFV) and classical swine fever virus. The assay eliminates the need for viral nucleic acid purification using a buffer system for crude extraction and an impurity-tolerant enzyme. However, the assay had not yet been validated using field samples of ASFV-infected pigs. Therefore, to address this gap, we tested 101 samples collected from pigs in Vietnam during 2018 and 2021 for validation.</p><p><strong>Results: </strong>The rRT-PCR assay demonstrated a diagnostic sensitivity of 98.8% and a specificity of 100%. Remarkably, crude samples yielded results comparable to those of purified samples, indicating the feasibility of using crude samples without compromising accuracy in ASFV detection. Our findings emphasize the effectiveness of the rRT-PCR assay for the prompt and accurate diagnosis of both swine fever viruses, which is essential for effective disease prevention and control in swine populations.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-024-06898-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study validates a direct multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay which was previously established for enabling rapid and simultaneous detection of African swine fever (ASF) virus (ASFV) and classical swine fever virus. The assay eliminates the need for viral nucleic acid purification using a buffer system for crude extraction and an impurity-tolerant enzyme. However, the assay had not yet been validated using field samples of ASFV-infected pigs. Therefore, to address this gap, we tested 101 samples collected from pigs in Vietnam during 2018 and 2021 for validation.
Results: The rRT-PCR assay demonstrated a diagnostic sensitivity of 98.8% and a specificity of 100%. Remarkably, crude samples yielded results comparable to those of purified samples, indicating the feasibility of using crude samples without compromising accuracy in ASFV detection. Our findings emphasize the effectiveness of the rRT-PCR assay for the prompt and accurate diagnosis of both swine fever viruses, which is essential for effective disease prevention and control in swine populations.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.