Impact of a poly(ethylene glycol) corona block on drug encapsulation during polymerization induced self-assembly†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-09-03 DOI:10.1039/D4SM00654B
Guanrui Li, Cassie Duclos and Ralm G. Ricarte
{"title":"Impact of a poly(ethylene glycol) corona block on drug encapsulation during polymerization induced self-assembly†","authors":"Guanrui Li, Cassie Duclos and Ralm G. Ricarte","doi":"10.1039/D4SM00654B","DOIUrl":null,"url":null,"abstract":"<p >Polymerization induced self-assembly (PISA) provides a facile platform for encapsulating therapeutics within block copolymer nanoparticles. Performing PISA in the presence of a hydrophobic drug alters both the nanoparticle shape and encapsulation efficiency. While previous studies primarily examined the interactions between the drug and hydrophobic core block, this work explores the impact of the hydrophilic corona block on encapsulation. Poly(ethylene glycol) (PEG) and poly(2-hydroxypropyl methacrylate) (PHPMA) are used as the model corona and core blocks, respectively, and phenylacetic acid (PA) is employed as the model drug. Attachment of a dithiobenzoate end group to the PEG homopolymer – transforming it into a macroscopic reversible addition–fragmentation chain transfer agent – causes the polymer to form a small number of nanoscopic aggregates in solution. Adding PA to the PEG solution encourages further aggregation and macroscopic phase separation. During the PISA of PEG-PHPMA block copolymers, inclusion of PA in the reaction mixture promotes faster nucleation of spherical micelles. Although increasing the targeted PA loading from 0 to 20 mg mL<small><sup>−1</sup></small> does not affect the micelle size or shape, it alters the drug spatial distribution within the PISA microenvironment. PA partitions into either PEG-PHPMA micelles, deuterium oxide, or other polymeric species – including PEG aggregates and unimer chains. Increasing the targeted PA loading changes the fraction of drug within each encapsulation site. This work indicates that the corona block plays a critical role in dictating drug encapsulation during PISA.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00654b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00654b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymerization induced self-assembly (PISA) provides a facile platform for encapsulating therapeutics within block copolymer nanoparticles. Performing PISA in the presence of a hydrophobic drug alters both the nanoparticle shape and encapsulation efficiency. While previous studies primarily examined the interactions between the drug and hydrophobic core block, this work explores the impact of the hydrophilic corona block on encapsulation. Poly(ethylene glycol) (PEG) and poly(2-hydroxypropyl methacrylate) (PHPMA) are used as the model corona and core blocks, respectively, and phenylacetic acid (PA) is employed as the model drug. Attachment of a dithiobenzoate end group to the PEG homopolymer – transforming it into a macroscopic reversible addition–fragmentation chain transfer agent – causes the polymer to form a small number of nanoscopic aggregates in solution. Adding PA to the PEG solution encourages further aggregation and macroscopic phase separation. During the PISA of PEG-PHPMA block copolymers, inclusion of PA in the reaction mixture promotes faster nucleation of spherical micelles. Although increasing the targeted PA loading from 0 to 20 mg mL−1 does not affect the micelle size or shape, it alters the drug spatial distribution within the PISA microenvironment. PA partitions into either PEG-PHPMA micelles, deuterium oxide, or other polymeric species – including PEG aggregates and unimer chains. Increasing the targeted PA loading changes the fraction of drug within each encapsulation site. This work indicates that the corona block plays a critical role in dictating drug encapsulation during PISA.

Abstract Image

Abstract Image

在聚合诱导自组装过程中,聚乙二醇电晕块对药物封装的影响。
聚合诱导自组装(PISA)为在嵌段共聚物纳米粒子中封装治疗药物提供了一个便捷的平台。在有疏水性药物存在的情况下进行聚合诱导自组装会改变纳米颗粒的形状和封装效率。之前的研究主要考察了药物与疏水性核心嵌段之间的相互作用,而本研究则探讨了亲水性副嵌段对封装的影响。聚乙二醇(PEG)和聚(2-羟丙基甲基丙烯酸酯)(PHPMA)分别用作模型冠块和芯块,苯乙酸(PA)用作模型药物。将二硫代苯甲酸端基连接到 PEG 均聚物上,将其转化为一种宏观可逆的加成-断裂链转移剂,从而使聚合物在溶液中形成少量纳米聚集体。向 PEG 溶液中添加 PA 会促进进一步的聚集和宏观相分离。在 PEG-PHPMA 嵌段共聚物的 PISA 过程中,在反应混合物中加入 PA 会加快球形胶束的成核速度。虽然将 PA 的目标负载量从 0 毫克 mL-1 增加到 20 毫克 mL-1 不会影响胶束的大小或形状,但会改变药物在 PISA 微环境中的空间分布。PA 会分化成 PEG-PHPMA 胶束、氧化氘或其他聚合物种类,包括 PEG 聚合物和单体链。增加目标 PA 负载会改变每个封装位点内的药物比例。这项研究表明,电晕区块在 PISA 过程中对药物封装起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信