Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami.

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c03307
Minle Chen, Yijuan Jiang, Yongjie Zhang, Xiaoling Chen, Lei Xie, Lili Xie, Tao Zeng, Yana Liu, Hao Liu, Min Wang, Xiaofeng Chen, Zhenzhen Zhang, Yu He, Xian Qin, Chunhua Lu, Qiushui Chen, Huanghao Yang
{"title":"Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami.","authors":"Minle Chen, Yijuan Jiang, Yongjie Zhang, Xiaoling Chen, Lei Xie, Lili Xie, Tao Zeng, Yana Liu, Hao Liu, Min Wang, Xiaofeng Chen, Zhenzhen Zhang, Yu He, Xian Qin, Chunhua Lu, Qiushui Chen, Huanghao Yang","doi":"10.1021/acs.nanolett.4c03307","DOIUrl":null,"url":null,"abstract":"<p><p>Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb<sup>3+</sup> or Eu<sup>3+</sup>) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu<sup>3+</sup>-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu<sup>3+</sup>-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03307","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.

Abstract Image

利用镧系元素敏化 DNA 折纸在单粒子水平实现生物分子辐射损伤的可视化。
精确监测生物分子辐射损伤对于了解 X 射线诱导的细胞损伤和提高临床放疗的准确性至关重要。我们介绍了用于在单粒子水平直接观察辐射损伤的镧系元素-DNA原型纳米计量器的设计和性能。与 DNA 折纸纳米传感器配位的镧系离子(Tb3+ 或 Eu3+)提高了 X 射线辐照的灵敏度。原子力显微镜(AFM)显示,Eu3+敏化的DNA折纸在X射线辐照下发生了形态变化,表明电离产生的电子和自由基造成了破坏。我们进一步证明了 Eu3+-DNA-origami 集成芯片在精确监测辐射介导的癌症放疗中的实用性。定量结果显示,在可比的 X 射线照射剂量下,流式细胞术和组织学检查的趋势一致,为临床前应用提供了一种经济实惠、用户友好的可视化工具。这些发现为重金属对辐射诱导的生物分子损伤的影响提供了新的见解,并为未来开发用于精确临床放射摄影的纳米级辐射传感器的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信