Zhiming Xiao, Xinyou He, Fangyong Yu, Bao Zhang, Xing Ou
{"title":"Interfacial Robustness and Improved Kinetics of Single-Crystal Ni-Rich Co-Free Cathodes Enabled by Surface Crystal-Facet Modulation.","authors":"Zhiming Xiao, Xinyou He, Fangyong Yu, Bao Zhang, Xing Ou","doi":"10.1021/acs.nanolett.4c01816","DOIUrl":null,"url":null,"abstract":"<p><p>The elimination of Co from Ni-rich layered cathodes is critical to reduce the production cost and increase the energy density for sustainable development. Herein, a delicate strategy of crystal-facet modulation is designed and explored, which is achieved by simultaneous Al/W-doping into the precursors, while the surface role of the crystal-facet is intensively revealed. Unlike traditional studies on crystal structure growth along a certain direction, this work modulates the crystal-facet at the nanoscale based on the effect of W-doping dynamic migration with surface energy, successfully constructing the core-shell (003)/(104) facet surface. Compared to the (003) plane, the induced (104) facet at the surface can provide more space for Li<sup>+</sup>-activity, enabling lower interfacial polarization and higher Li<sup>+</sup>-transport rate. Additionally, bulk Al-doping is beneficial for enhancing the Li<sup>+</sup>-diffusion from the exterior surface to the interior lattice. With improved interfacial stability and restrained surface erosion, the product exhibits superior capacity retention and boosted rate performance under the elevated temperature.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c01816","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The elimination of Co from Ni-rich layered cathodes is critical to reduce the production cost and increase the energy density for sustainable development. Herein, a delicate strategy of crystal-facet modulation is designed and explored, which is achieved by simultaneous Al/W-doping into the precursors, while the surface role of the crystal-facet is intensively revealed. Unlike traditional studies on crystal structure growth along a certain direction, this work modulates the crystal-facet at the nanoscale based on the effect of W-doping dynamic migration with surface energy, successfully constructing the core-shell (003)/(104) facet surface. Compared to the (003) plane, the induced (104) facet at the surface can provide more space for Li+-activity, enabling lower interfacial polarization and higher Li+-transport rate. Additionally, bulk Al-doping is beneficial for enhancing the Li+-diffusion from the exterior surface to the interior lattice. With improved interfacial stability and restrained surface erosion, the product exhibits superior capacity retention and boosted rate performance under the elevated temperature.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.