Accelerated Solar-Driven Polyolefin Degradation via Self-Activated Hydroxy-Rich ZnIn2S4.

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-09-18 Epub Date: 2024-09-03 DOI:10.1021/acs.nanolett.4c03067
Haoze Li, Shan Jiang, Shan He, Yingbing Zhang, Ye Chen, Li Wang, Jianping Yang
{"title":"Accelerated Solar-Driven Polyolefin Degradation via Self-Activated Hydroxy-Rich ZnIn<sub>2</sub>S<sub>4</sub>.","authors":"Haoze Li, Shan Jiang, Shan He, Yingbing Zhang, Ye Chen, Li Wang, Jianping Yang","doi":"10.1021/acs.nanolett.4c03067","DOIUrl":null,"url":null,"abstract":"<p><p>Degradation of polyolefin (PE) plastic by a traditional chemical method requires a high pressure and a high temperature but generates complex products. Here, sulfur vacancy-rich ZnIn<sub>2</sub>S<sub>4</sub> and hydroxy-rich ZnIn<sub>2</sub>S<sub>4</sub> were rationally fabricated to realize photocatalytic degradation of PE in an aqueous solution under mild conditions. The results reveal that the optimized photocatalyst could degrade PE into CO<sub>2</sub> and CO, and PE had a weight loss of 84.5% after reaction for 60 h. Systematic experiments confirm that the synergetic effect of hydroxyl groups and S vacancies contributes to improve the photocatalytic degradation properties of plastic wastes. In-depth investigation illustrates that the active radicals attack (h<sup>+</sup> and •OH) weak spots (C-H and C-C bonds) of the PE chain to form CO<sub>2</sub>, which is further selectively photoreduced to CO. Multimodule synergistic tandem catalysis can further improve the utilization value of plastic wastes; for example, product CO<sub>2</sub>/CO in the plastic degradation process can be converted in situ into HCOOH by coupling with electrocatalytic technology.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Degradation of polyolefin (PE) plastic by a traditional chemical method requires a high pressure and a high temperature but generates complex products. Here, sulfur vacancy-rich ZnIn2S4 and hydroxy-rich ZnIn2S4 were rationally fabricated to realize photocatalytic degradation of PE in an aqueous solution under mild conditions. The results reveal that the optimized photocatalyst could degrade PE into CO2 and CO, and PE had a weight loss of 84.5% after reaction for 60 h. Systematic experiments confirm that the synergetic effect of hydroxyl groups and S vacancies contributes to improve the photocatalytic degradation properties of plastic wastes. In-depth investigation illustrates that the active radicals attack (h+ and •OH) weak spots (C-H and C-C bonds) of the PE chain to form CO2, which is further selectively photoreduced to CO. Multimodule synergistic tandem catalysis can further improve the utilization value of plastic wastes; for example, product CO2/CO in the plastic degradation process can be converted in situ into HCOOH by coupling with electrocatalytic technology.

Abstract Image

通过自激活富羟基 ZnIn2S4 加速太阳能驱动的聚烯烃降解。
用传统的化学方法降解聚烯烃(PE)塑料需要高压和高温,但会产生复杂的产物。本文合理制备了富含硫空位的 ZnIn2S4 和富含羟基的 ZnIn2S4,在温和条件下实现了水溶液中 PE 的光催化降解。系统实验证实,羟基和 S 空位的协同作用有助于提高塑料废弃物的光催化降解性能。深入研究表明,活性自由基攻击(h+ 和 -OH)聚乙烯链的薄弱点(C-H 键和 C-C 键),形成 CO2,并进一步选择性地光降解为 CO。多模块协同串联催化技术可进一步提高塑料废弃物的利用价值;例如,塑料降解过程中生成的 CO2/CO 可通过与电催化技术相结合,就地转化为 HCOOH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信