Dual-Channel Control of Ferroelasticity in a Soft Molecular Crystal Induced by Perfluorinated Substitution

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Long-Xing Zhou, Wei-Xin Mao, Jin-Fei Lan, Xin Deng, Yan Qin, Han-Yue Zhang
{"title":"Dual-Channel Control of Ferroelasticity in a Soft Molecular Crystal Induced by Perfluorinated Substitution","authors":"Long-Xing Zhou, Wei-Xin Mao, Jin-Fei Lan, Xin Deng, Yan Qin, Han-Yue Zhang","doi":"10.1021/acs.chemmater.4c02047","DOIUrl":null,"url":null,"abstract":"Molecular ferroelastic materials have been widely studied because of their superior physical properties including lightweight, good biocompatibility, structural tunability, and low acoustic impedance. However, the discovery of molecular ferroelastic materials with desirable mechanical properties seems like looking for a needle in a haystack due to the lack of effective theories to control and optimize ferroelasticity. In this work, we successfully constructed the molecular ferroelastic material amantadine–pentafluorobenzoic acid (AM-PFBA) based on the chemical design strategy of perfluorinated substitution. AM-PFBA undergoes a ferroelastic phase transition with the Aizu notation of 2/<i>m</i>F<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mover&gt;&lt;mi mathvariant=\"normal\"&gt;1&lt;/mi&gt;&lt;mo accent=\"true\" stretchy=\"false\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.669em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.515em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.232em, 1000.46em, 2.359em, -999.997em); top: -2.2em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.515em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.179em, 1000.41em, 4.152em, -999.997em); top: -3.993em; left: 0em;\"><span style=\"font-family: MathJax_Main;\">1</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.23em, 1000.41em, 3.589em, -999.997em); top: -4.249em; left: 0em;\"><span style=\"font-family: MathJax_Main;\">¯</span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.059em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mover><mi mathvariant=\"normal\">1</mi><mo accent=\"true\" stretchy=\"false\">¯</mo></mover></math></script> at 354 K. The stripe-shaped ferroelastic domains can be reoriented under temperature or stress. Notably, AM-PFBA shows good mechanical flexibility with a small elastic modulus (<i>E</i>) of 6.45 GPa and hardness (<i>H</i>) of 0.32 GPa, which is much smaller than that of most organic crystals. Such a unique mechanical property of AM-PFBA crystal may be attributed to the introduction of fluorine atoms. This work offers an efficient strategy for precisely designing high-performance molecular ferroelastic.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"31 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02047","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular ferroelastic materials have been widely studied because of their superior physical properties including lightweight, good biocompatibility, structural tunability, and low acoustic impedance. However, the discovery of molecular ferroelastic materials with desirable mechanical properties seems like looking for a needle in a haystack due to the lack of effective theories to control and optimize ferroelasticity. In this work, we successfully constructed the molecular ferroelastic material amantadine–pentafluorobenzoic acid (AM-PFBA) based on the chemical design strategy of perfluorinated substitution. AM-PFBA undergoes a ferroelastic phase transition with the Aizu notation of 2/mF1¯ at 354 K. The stripe-shaped ferroelastic domains can be reoriented under temperature or stress. Notably, AM-PFBA shows good mechanical flexibility with a small elastic modulus (E) of 6.45 GPa and hardness (H) of 0.32 GPa, which is much smaller than that of most organic crystals. Such a unique mechanical property of AM-PFBA crystal may be attributed to the introduction of fluorine atoms. This work offers an efficient strategy for precisely designing high-performance molecular ferroelastic.

Abstract Image

全氟替代诱导软分子晶体铁弹性的双通道控制
分子铁弹性材料具有重量轻、生物相容性好、结构可调、声阻抗低等优越的物理特性,因此被广泛研究。然而,由于缺乏控制和优化铁弹性的有效理论,发现具有理想机械性能的分子铁弹性材料无异于大海捞针。在这项工作中,我们基于全氟取代的化学设计策略,成功构建了金刚烷-五氟苯甲酸(AM-PFBA)分子铁弹性材料。AM-PFBA在354 K时发生铁弹性相变,会津符号为2/mF1¯1¯1¯。值得注意的是,AM-PFBA 具有良好的机械柔韧性,其弹性模量(E)为 6.45 GPa,硬度(H)为 0.32 GPa,远小于大多数有机晶体。AM-PFBA 晶体之所以具有如此独特的机械特性,可能与氟原子的引入有关。这项工作为精确设计高性能分子铁弹性体提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信