{"title":"Real-time detection and discrimination of radioactive gas mixtures using nanoporous inorganic scintillators","authors":"Raphael Marie-Luce, Pavlo Mai, Frederic Lerouge, Yannis Cheref, Sylvie Pierre, Benoit Sabot, Frederic Chaput, Christophe Dujardin","doi":"10.1038/s41566-024-01507-x","DOIUrl":null,"url":null,"abstract":"The nuclear industry’s expansion to encompass carbon-free electricity generation from small modular reactors and nuclear fuel reprocessing necessitates enhanced detection and monitoring of pure beta-emitting radioactive elements such as 3H and 85Kr; this endeavour is crucial for nuclear safety authorities tasked with environmental monitoring. However, the short range of electrons emitted by these gases makes detection challenging. Current methods, such as ionization chambers and liquid scintillation, do not offer at the same time good sensitivity, real-time analysis and ease of implementation. We demonstrate an approach using a gas–solid mixture to overcome these limitations. We synthetized a transparent and scintillating nanoporous material, an aerogel of Y3Al5O12:Ce4+, and achieved real-time detection with an efficiency of 96% for 85Kr and 18% for 3H. The method reaches a sensitivity below 100 mBq per cm3 over 100 s measurement time. We are able to measure simultaneously as mixtures containing both 3H and 85Kr a capability not possible previously. Our results demonstrate a compact and robust detection system for inline measurement of strategic radioactive gases. This combination of concept and method enhances nuclear power plant management and contributes to environmental safeguarding. Beyond the detection issues, this concept opens a wide field of new methods for radionuclide metrology. Using a gas–solid mixture approach, researchers used a transparent, scintillating nanoporous material for real-time detection of 85Kr and 3H, two pure beta emitters. They also simultaneously measure a mixture of them. The broadly applicable approach may be useful for nuclear industry and environmental safeguarding.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":null,"pages":null},"PeriodicalIF":32.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01507-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01507-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nuclear industry’s expansion to encompass carbon-free electricity generation from small modular reactors and nuclear fuel reprocessing necessitates enhanced detection and monitoring of pure beta-emitting radioactive elements such as 3H and 85Kr; this endeavour is crucial for nuclear safety authorities tasked with environmental monitoring. However, the short range of electrons emitted by these gases makes detection challenging. Current methods, such as ionization chambers and liquid scintillation, do not offer at the same time good sensitivity, real-time analysis and ease of implementation. We demonstrate an approach using a gas–solid mixture to overcome these limitations. We synthetized a transparent and scintillating nanoporous material, an aerogel of Y3Al5O12:Ce4+, and achieved real-time detection with an efficiency of 96% for 85Kr and 18% for 3H. The method reaches a sensitivity below 100 mBq per cm3 over 100 s measurement time. We are able to measure simultaneously as mixtures containing both 3H and 85Kr a capability not possible previously. Our results demonstrate a compact and robust detection system for inline measurement of strategic radioactive gases. This combination of concept and method enhances nuclear power plant management and contributes to environmental safeguarding. Beyond the detection issues, this concept opens a wide field of new methods for radionuclide metrology. Using a gas–solid mixture approach, researchers used a transparent, scintillating nanoporous material for real-time detection of 85Kr and 3H, two pure beta emitters. They also simultaneously measure a mixture of them. The broadly applicable approach may be useful for nuclear industry and environmental safeguarding.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.