Synergistic Regulation of Polyselenide Dissolution and Na-Ion Diffusion of Se-Vacancy-Rich Bismuth Selenide toward Ultrafast and Durable Sodium-Ion Batteries

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zeyu Lin, Wei Zhang, Jian Peng, Qinghua Li, Zhixin Liang, Gaoyu Wang, Junlin Wang, Guang Wang, Zhijiao Huang, Shaoming Huang
{"title":"Synergistic Regulation of Polyselenide Dissolution and Na-Ion Diffusion of Se-Vacancy-Rich Bismuth Selenide toward Ultrafast and Durable Sodium-Ion Batteries","authors":"Zeyu Lin,&nbsp;Wei Zhang,&nbsp;Jian Peng,&nbsp;Qinghua Li,&nbsp;Zhixin Liang,&nbsp;Gaoyu Wang,&nbsp;Junlin Wang,&nbsp;Guang Wang,&nbsp;Zhijiao Huang,&nbsp;Shaoming Huang","doi":"10.1002/aenm.202402110","DOIUrl":null,"url":null,"abstract":"<p>Metal selenides (MSes) have great potential as candidate anode materials in high-specific-energy sodium-ion batteries (SIBs) but are plagued by rapid capacity degradation and slow kinetics. Here, it is reveal that the Bi<sub>2</sub>Se<sub>3</sub> anode discharge process involves multiple-types of sodium polyselenides (Na-pSe<i><sub>x</sub></i>) which suffer from terrible dissolution and shuttling properties. Based on these observations, a nanoflower-like composite of dual carbon-confined Bi<sub>2</sub>Se<sub>3−</sub><i><sub>x</sub></i> crystallites is designed via facile defect chemistry. The robust dual N-doped carbon layer suppresses the precipitation and aggregation of Bi<sub>2</sub>Se<sub>3</sub>, significantly alleviating the dissolution and shuttle effect of Na-pSe<i><sub>x</sub></i>. Theoretical calculations indicate that the pyridine/pyrrole nitrogen sites exhibit strong van der Waals resistance and chemisorption properties against Na<sub>2</sub>Se<sub>4</sub> and Na<sub>2</sub>Se<sub>2</sub>. Furthermore, the abundant Se vacancies improve the inherent conductivity of Bi<sub>2</sub>Se<sub>3</sub>, reduce the diffusion barrier of Na<sup>+</sup>, and accelerate the reaction kinetics. Consequently, the resulting Bi<sub>2</sub>Se<sub>3−</sub><i><sub>x</sub></i>@DNC electrode exhibits extraordinary durability (over 2000 cycles at 10.0 A g<sup>−1</sup>) and high-rate capability (354.4 mAh g<sup>−1</sup> at 75.0 A g<sup>−1</sup>), propelling the battery performance to new heights. Encouragingly, the assembled hybrid capacitor displays competitive rate performance and an ultra-long lifespan exceeding 40 000 cycles, making the Bi<sub>2</sub>Se<sub>3−</sub><i><sub>x</sub></i>@DNC electrode a promising candidate for SIBs.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 46","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202402110","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal selenides (MSes) have great potential as candidate anode materials in high-specific-energy sodium-ion batteries (SIBs) but are plagued by rapid capacity degradation and slow kinetics. Here, it is reveal that the Bi2Se3 anode discharge process involves multiple-types of sodium polyselenides (Na-pSex) which suffer from terrible dissolution and shuttling properties. Based on these observations, a nanoflower-like composite of dual carbon-confined Bi2Se3−x crystallites is designed via facile defect chemistry. The robust dual N-doped carbon layer suppresses the precipitation and aggregation of Bi2Se3, significantly alleviating the dissolution and shuttle effect of Na-pSex. Theoretical calculations indicate that the pyridine/pyrrole nitrogen sites exhibit strong van der Waals resistance and chemisorption properties against Na2Se4 and Na2Se2. Furthermore, the abundant Se vacancies improve the inherent conductivity of Bi2Se3, reduce the diffusion barrier of Na+, and accelerate the reaction kinetics. Consequently, the resulting Bi2Se3−x@DNC electrode exhibits extraordinary durability (over 2000 cycles at 10.0 A g−1) and high-rate capability (354.4 mAh g−1 at 75.0 A g−1), propelling the battery performance to new heights. Encouragingly, the assembled hybrid capacitor displays competitive rate performance and an ultra-long lifespan exceeding 40 000 cycles, making the Bi2Se3−x@DNC electrode a promising candidate for SIBs.

Abstract Image

Abstract Image

Abstract Image

多硒化物溶解与富含硒空位的硒化铋的钠离子扩散协同调控,实现超快和耐用的钠离子电池
金属硒化物(MSes)作为高比能量钠离子电池(SIBs)的候选负极材料具有巨大潜力,但却受到容量快速衰减和动力学缓慢的困扰。本文揭示了 Bi2Se3 阳极放电过程涉及多种类型的钠聚硒化物(Na-pSex),这些钠聚硒化物具有可怕的溶解和穿梭特性。基于这些观察结果,我们通过简便的缺陷化学方法设计出了一种双碳约束 Bi2Se3-x 晶体的纳米花状复合材料。坚固的双 N 掺杂碳层抑制了 Bi2Se3 的沉淀和聚集,大大缓解了 Na-pSex 的溶解和穿梭效应。理论计算表明,吡啶/吡咯氮位点对 Na2Se4 和 Na2Se2 具有很强的范德华阻力和化学吸附特性。此外,丰富的 Se 空位提高了 Bi2Se3 的固有导电性,降低了 Na+ 的扩散阻力,并加速了反应动力学。因此,由此产生的 Bi2Se3-x@DNC 电极表现出非凡的耐用性(在 10.0 A g-1 条件下超过 2000 次循环)和高倍率能力(在 75.0 A g-1 条件下为 354.4 mAh g-1),将电池性能推向了新的高度。令人鼓舞的是,组装后的混合电容器显示出具有竞争力的速率性能和超过 40 000 次循环的超长寿命,使 Bi2Se3-x@DNC 电极成为 SIB 的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信