{"title":"Toward decoding spatiotemporal signaling activities of reactive immunometabolites with precision immuno-chemical biology tools","authors":"Kuan-Ting Huang, Yimon Aye","doi":"10.1038/s42004-024-01282-4","DOIUrl":null,"url":null,"abstract":"Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs—e.g., fumarate, itaconate) is an emerging phenomenon of major biomedical importance. Despite their localized production, mt-REMs elicit significantly large local and global footprints within and across cells, through mechanisms involving electrophile signaling. Burgeoning efforts are being put into profiling mt-REMs’ potential protein-targets and phenotypic mapping of their multifaceted inflammatory behaviors. Yet, precision indexing of mt-REMs’ first-responders with spatiotemporal intelligence and locale-specific function assignments remain elusive. Highlighting the latest advances and overarching challenges, this perspective aims to stimulate thoughts and spur interdisciplinary innovations to address these unmet chemical-biotechnological needs at therapeutic immuno-signaling frontiers. Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs) is an emerging phenomenon of major biomedical importance. Here, the authors highlight the latest advances and overarching challenges in precision indexing of mt-REMs’ cellular responses with spatiotemporal intelligence and locale-specific function assignments.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-16"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01282-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01282-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs—e.g., fumarate, itaconate) is an emerging phenomenon of major biomedical importance. Despite their localized production, mt-REMs elicit significantly large local and global footprints within and across cells, through mechanisms involving electrophile signaling. Burgeoning efforts are being put into profiling mt-REMs’ potential protein-targets and phenotypic mapping of their multifaceted inflammatory behaviors. Yet, precision indexing of mt-REMs’ first-responders with spatiotemporal intelligence and locale-specific function assignments remain elusive. Highlighting the latest advances and overarching challenges, this perspective aims to stimulate thoughts and spur interdisciplinary innovations to address these unmet chemical-biotechnological needs at therapeutic immuno-signaling frontiers. Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs) is an emerging phenomenon of major biomedical importance. Here, the authors highlight the latest advances and overarching challenges in precision indexing of mt-REMs’ cellular responses with spatiotemporal intelligence and locale-specific function assignments.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.