Joao Henrique Quintino Palhares, Nikhil Garg, Pierre-Antoine Mouny, Yann Beilliard, J. Sandrini, F. Arnaud, Lorena Anghel, Fabien Alibart, Dominique Drouin, Philippe Galy
{"title":"28 nm FDSOI embedded PCM exhibiting near zero drift at 12 K for cryogenic SNNs","authors":"Joao Henrique Quintino Palhares, Nikhil Garg, Pierre-Antoine Mouny, Yann Beilliard, J. Sandrini, F. Arnaud, Lorena Anghel, Fabien Alibart, Dominique Drouin, Philippe Galy","doi":"10.1038/s44335-024-00008-y","DOIUrl":null,"url":null,"abstract":"Seeking to circumvent conventional computing bottlenecks, hardware alternatives, from brain-inspired designs to cryogenic quantum systems, necessitate integrating emerging non-volatile memories. Yet, the immaturity and unreliability of cryogenic-compatible memories hinder scalable computing advancements. This study characterizes 28 nm FD-SOI substrate-embedded Ge-rich Ge2Sb2Te5 phase change memories (ePCMs) down to 12 K to overcome these hurdles. It reveals that ePCMs is cryogenic compatible and can encode multiple resistance states with minimal drift, essential for advanced computing solutions. Through simulations, the ePCM’s impact on a spiking neural network (SNN) performing MNIST classification is evaluated. The SNN maintains high accuracy for extended periods of 2 years at cryogenic temperatures, while an accuracy drop of 10.8% is observed at room temperature. These results highlight the potential of multilevel ePCMs in brain-inspired cryogenic computing applications, offering a promising avenue for the evolution of unconventional computing systems.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00008-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00008-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Seeking to circumvent conventional computing bottlenecks, hardware alternatives, from brain-inspired designs to cryogenic quantum systems, necessitate integrating emerging non-volatile memories. Yet, the immaturity and unreliability of cryogenic-compatible memories hinder scalable computing advancements. This study characterizes 28 nm FD-SOI substrate-embedded Ge-rich Ge2Sb2Te5 phase change memories (ePCMs) down to 12 K to overcome these hurdles. It reveals that ePCMs is cryogenic compatible and can encode multiple resistance states with minimal drift, essential for advanced computing solutions. Through simulations, the ePCM’s impact on a spiking neural network (SNN) performing MNIST classification is evaluated. The SNN maintains high accuracy for extended periods of 2 years at cryogenic temperatures, while an accuracy drop of 10.8% is observed at room temperature. These results highlight the potential of multilevel ePCMs in brain-inspired cryogenic computing applications, offering a promising avenue for the evolution of unconventional computing systems.