Three-dimensional flame chemiluminescence tomography reconstruction based on outer contour pre-reconstruction

IF 3.5 2区 工程技术 Q2 OPTICS
{"title":"Three-dimensional flame chemiluminescence tomography reconstruction based on outer contour pre-reconstruction","authors":"","doi":"10.1016/j.optlaseng.2024.108549","DOIUrl":null,"url":null,"abstract":"<div><p>The computed tomography of chemiluminescence (CTC) can be used to reconstruct a three-dimensional (3D) flame chemiluminescence field to obtain information about the spatial characteristics of the flame. However, additional information is needed to solve the ill-posed inverse problem of the CTC due to the constraints such as economy of CTC system and the number of views. In this study, a PR-SART algorithm is proposed for 3D flame reconstruction by combining the flame outer contour pre-reconstruction model with the simultaneous algebraic reconstruction technique (SART). The influence of the number of pre-reconstruction iterations is analyzed in numerical studies. The reconstruction performance of the SART algorithm is compared with the PR-SART algorithm for two flame structures under various numbers of views and noise conditions. Finally, an OH* chemiluminescence imaging system consisting of 8 ultraviolet (UV) cameras is developed, and evaluated through use of reconstructing the 3D structure of low-swirl flames. Numerical and experimental studies indicate that the proposed algorithm and CTC system are effectively capable of removing the reconstruction error in the flame-free region, improving the reconstruction quality, and reducing the computational cost.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014381662400527X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The computed tomography of chemiluminescence (CTC) can be used to reconstruct a three-dimensional (3D) flame chemiluminescence field to obtain information about the spatial characteristics of the flame. However, additional information is needed to solve the ill-posed inverse problem of the CTC due to the constraints such as economy of CTC system and the number of views. In this study, a PR-SART algorithm is proposed for 3D flame reconstruction by combining the flame outer contour pre-reconstruction model with the simultaneous algebraic reconstruction technique (SART). The influence of the number of pre-reconstruction iterations is analyzed in numerical studies. The reconstruction performance of the SART algorithm is compared with the PR-SART algorithm for two flame structures under various numbers of views and noise conditions. Finally, an OH* chemiluminescence imaging system consisting of 8 ultraviolet (UV) cameras is developed, and evaluated through use of reconstructing the 3D structure of low-swirl flames. Numerical and experimental studies indicate that the proposed algorithm and CTC system are effectively capable of removing the reconstruction error in the flame-free region, improving the reconstruction quality, and reducing the computational cost.

基于外轮廓预重建的三维火焰化学发光层析成像重建
化学发光计算机断层扫描(CTC)可用于重建三维(3D)火焰化学发光场,从而获得火焰的空间特征信息。然而,由于受到 CTC 系统的经济性和视图数量等因素的限制,还需要额外的信息来解决 CTC 的逆问题。本研究结合火焰外轮廓预重建模型和同步代数重建技术(SART),提出了一种用于三维火焰重建的 PR-SART 算法。数值研究分析了预重建迭代次数的影响。比较了 SART 算法和 PR-SART 算法在不同视图数和噪声条件下对两种火焰结构的重建性能。最后,开发了一种由 8 台紫外线(UV)照相机组成的 OH* 化学发光成像系统,并通过重建低漩涡火焰的三维结构对该系统进行了评估。数值和实验研究表明,所提出的算法和 CTC 系统能有效消除无火焰区域的重建误差,提高重建质量,并降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信