Yijie Xu , Sophie C.F. Hendrikse , Jan Treur , Peter H.M.P. Roelofsma
{"title":"Adaptive network modeling for joint action and memory recall for elderly by detecting interpersonal synchrony","authors":"Yijie Xu , Sophie C.F. Hendrikse , Jan Treur , Peter H.M.P. Roelofsma","doi":"10.1016/j.cogsys.2024.101280","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the potential of adaptive network modeling for joint action and memory recall among elderly through detecting interpersonal synchrony. With the aging population increasing, there is a crucial need to focus on the health and social interaction of older adults. Based on research of the significance of social interaction and memory use for the elderly, as well as the role of interpersonal synchrony in joint action, this paper aims to analyse computationally how to enhance positive effects of social interactions among older individuals by applying an adaptive network model. The research examines the concept of interpersonal synchrony and its impact on joint action, memory, and emotional well-being in elderly populations. Through simulation experiments and analysis, the study demonstrates the potential benefits for music in memory recall for older adults with cognitive decline, highlighting the importance of social interaction and emotional resonance. This study offers a valuable contribution to understanding and improving social interactions and memory recall among the elderly.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101280"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389041724000743/pdfft?md5=cf7f62f35c4e17b003e1165735b663ab&pid=1-s2.0-S1389041724000743-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000743","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the potential of adaptive network modeling for joint action and memory recall among elderly through detecting interpersonal synchrony. With the aging population increasing, there is a crucial need to focus on the health and social interaction of older adults. Based on research of the significance of social interaction and memory use for the elderly, as well as the role of interpersonal synchrony in joint action, this paper aims to analyse computationally how to enhance positive effects of social interactions among older individuals by applying an adaptive network model. The research examines the concept of interpersonal synchrony and its impact on joint action, memory, and emotional well-being in elderly populations. Through simulation experiments and analysis, the study demonstrates the potential benefits for music in memory recall for older adults with cognitive decline, highlighting the importance of social interaction and emotional resonance. This study offers a valuable contribution to understanding and improving social interactions and memory recall among the elderly.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.