Unsupervised selective labeling for semi-supervised industrial defect detection

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jian Ge , Qin Qin , Shaojing Song , Jinhua Jiang , Zhiwei Shen
{"title":"Unsupervised selective labeling for semi-supervised industrial defect detection","authors":"Jian Ge ,&nbsp;Qin Qin ,&nbsp;Shaojing Song ,&nbsp;Jinhua Jiang ,&nbsp;Zhiwei Shen","doi":"10.1016/j.jksuci.2024.102179","DOIUrl":null,"url":null,"abstract":"<div><p>In industrial detection scenarios, achieving high accuracy typically relies on extensive labeled datasets, which are costly and time-consuming. This has motivated a shift towards semi-supervised learning (SSL), which leverages labeled and unlabeled data to improve learning efficiency and reduce annotation costs. This work proposes the unsupervised spectral clustering labeling (USCL) method to optimize SSL for industrial challenges like defect variability, rarity, and complex distributions. Integral to USCL, we employ the multi-task fusion self-supervised learning (MTSL) method to extract robust feature representations through multiple self-supervised tasks. Additionally, we introduce the Enhanced Spectral Clustering (ESC) method and a dynamic selecting function (DSF). ESC effectively integrates both local and global similarity matrices, improving clustering accuracy. The DSF maximally selects the most valuable instances for labeling, significantly enhancing the representativeness and diversity of the labeled data. USCL consistently improves various SSL methods compared to traditional instance selection methods. For example, it boosts Efficient Teacher by 5%, 6.6%, and 7.8% in mean Average Precision(mAP) on the Automotive Sealing Rings Defect Dataset, the Metallic Surface Defect Dataset, and the Printed Circuit Boards (PCB) Defect Dataset with 10% labeled data. Our work sets a new benchmark for SSL in industrial settings.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002684/pdfft?md5=2e9ae7d3bfac3922191cefd8f900c5a6&pid=1-s2.0-S1319157824002684-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002684","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial detection scenarios, achieving high accuracy typically relies on extensive labeled datasets, which are costly and time-consuming. This has motivated a shift towards semi-supervised learning (SSL), which leverages labeled and unlabeled data to improve learning efficiency and reduce annotation costs. This work proposes the unsupervised spectral clustering labeling (USCL) method to optimize SSL for industrial challenges like defect variability, rarity, and complex distributions. Integral to USCL, we employ the multi-task fusion self-supervised learning (MTSL) method to extract robust feature representations through multiple self-supervised tasks. Additionally, we introduce the Enhanced Spectral Clustering (ESC) method and a dynamic selecting function (DSF). ESC effectively integrates both local and global similarity matrices, improving clustering accuracy. The DSF maximally selects the most valuable instances for labeling, significantly enhancing the representativeness and diversity of the labeled data. USCL consistently improves various SSL methods compared to traditional instance selection methods. For example, it boosts Efficient Teacher by 5%, 6.6%, and 7.8% in mean Average Precision(mAP) on the Automotive Sealing Rings Defect Dataset, the Metallic Surface Defect Dataset, and the Printed Circuit Boards (PCB) Defect Dataset with 10% labeled data. Our work sets a new benchmark for SSL in industrial settings.

用于半监督工业缺陷检测的无监督选择性标记
在工业检测场景中,要实现高精度通常需要大量标注数据集,而这些数据集成本高、耗时长。这促使人们转向半监督学习(SSL),即利用已标注和未标注数据来提高学习效率并降低标注成本。本研究提出了无监督光谱聚类标注(USCL)方法,以优化 SSL,应对缺陷多变性、稀有性和复杂分布等工业挑战。作为 USCL 的组成部分,我们采用了多任务融合自我监督学习(MTSL)方法,通过多个自我监督任务提取稳健的特征表征。此外,我们还引入了增强光谱聚类(ESC)方法和动态选择函数(DSF)。ESC 有效整合了局部和全局相似性矩阵,提高了聚类的准确性。DSF 可最大限度地选择最有价值的实例进行标记,从而显著提高标记数据的代表性和多样性。与传统的实例选择方法相比,USCL 不断改进各种 SSL 方法。例如,在汽车密封环缺陷数据集、金属表面缺陷数据集和印刷电路板(PCB)缺陷数据集上,USCL 在平均精度(mAP)方面分别提高了高效教师 5%、6.6% 和 7.8%,标注数据的比例为 10%。我们的工作为工业环境中的 SSL 树立了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信