Enzymatic hydrolysis method for development of low glycemic index rice flour from temperate grown rice (var. Jehlum): Numerical optimization, rheological and spectroscopic characteristics
Tawheed Amin , H.R. Naik , Syed Zameer Hussain , Omar Bashir , Sajad Ahamd Rather , Sadaf Naaz , Sobiya Manzoor , S.A. Mir , Hilal A. Makroo , Akhoon Asrar Bashir , Shahnaz Mufti , Tariq Ahmad Ganaie , Immad A. Shah
{"title":"Enzymatic hydrolysis method for development of low glycemic index rice flour from temperate grown rice (var. Jehlum): Numerical optimization, rheological and spectroscopic characteristics","authors":"Tawheed Amin , H.R. Naik , Syed Zameer Hussain , Omar Bashir , Sajad Ahamd Rather , Sadaf Naaz , Sobiya Manzoor , S.A. Mir , Hilal A. Makroo , Akhoon Asrar Bashir , Shahnaz Mufti , Tariq Ahmad Ganaie , Immad A. Shah","doi":"10.1016/j.carres.2024.109248","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed at optimizing process protocols for development of low glycemic index (GI) rice flour (LGIRF) by employing enzymatic hydrolysis method using central composite rotatable design (CCRD). LGIRF was evaluated for pasting, farinographic, spectroscopic and microbiological attributes. Independent variables for optimization included concentrations of α-amylase (0.02–0.12 %), glucoamylase (0.02–0.24 %), as well as the incubation temperature (55–80°C). Resistant starch (RS), glycemic index (GI) and glycemic load (GL) were investigated as response variables. The optimum conditions for development of LGIRF with better quality were- α-amylase concentration of 0.040 %, glucoamylase concentration of 0.070 % and an incubation temperature of 60 °C. The results of mineral analysis revealed significantly (p < 0.05) lower levels of boron, potassium, zinc, phosphorus, magnesium, and manganese in LGIRF, while iron and copper were significantly higher. The viscosity profile as evident from pasting profile and farinographic characteristics of LGIRF were significantly (p < 0.05) lower than native rice flour. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopic studies showed an increase in flexible starch segments and a decrease in amorphous portion of starch LGIRF, along with chemical shift alterations in carbons 1 and 4. Free fatty acids and total plate count were significantly (p < 0.05) higher in LGIRF although was within limits.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"544 ","pages":"Article 109248"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002271","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed at optimizing process protocols for development of low glycemic index (GI) rice flour (LGIRF) by employing enzymatic hydrolysis method using central composite rotatable design (CCRD). LGIRF was evaluated for pasting, farinographic, spectroscopic and microbiological attributes. Independent variables for optimization included concentrations of α-amylase (0.02–0.12 %), glucoamylase (0.02–0.24 %), as well as the incubation temperature (55–80°C). Resistant starch (RS), glycemic index (GI) and glycemic load (GL) were investigated as response variables. The optimum conditions for development of LGIRF with better quality were- α-amylase concentration of 0.040 %, glucoamylase concentration of 0.070 % and an incubation temperature of 60 °C. The results of mineral analysis revealed significantly (p < 0.05) lower levels of boron, potassium, zinc, phosphorus, magnesium, and manganese in LGIRF, while iron and copper were significantly higher. The viscosity profile as evident from pasting profile and farinographic characteristics of LGIRF were significantly (p < 0.05) lower than native rice flour. 1H NMR and 13C NMR spectroscopic studies showed an increase in flexible starch segments and a decrease in amorphous portion of starch LGIRF, along with chemical shift alterations in carbons 1 and 4. Free fatty acids and total plate count were significantly (p < 0.05) higher in LGIRF although was within limits.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".