Multifunctional Ternary Oxide for Efficient CsPbBr3 Perovskite Solar Cells on Rigid and Flexible Substrate via All-Low-Temperature Process

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Xiao, Zijun Yi, Yuchen Xiong, Yihuai Huang, Wenguang Zhang, Qinghui Jiang, Abdul Basit, Guibin Shen, Yubo Luo, Xin Li* and Junyou Yang*, 
{"title":"Multifunctional Ternary Oxide for Efficient CsPbBr3 Perovskite Solar Cells on Rigid and Flexible Substrate via All-Low-Temperature Process","authors":"Bo Xiao,&nbsp;Zijun Yi,&nbsp;Yuchen Xiong,&nbsp;Yihuai Huang,&nbsp;Wenguang Zhang,&nbsp;Qinghui Jiang,&nbsp;Abdul Basit,&nbsp;Guibin Shen,&nbsp;Yubo Luo,&nbsp;Xin Li* and Junyou Yang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0125510.1021/acsmaterialslett.4c01255","DOIUrl":null,"url":null,"abstract":"<p >Efficient CsPbBr<sub>3</sub> perovskite films and the low-temperature fabrication of electron transport layers (ETLs) are crucial for the commercial viability of CsPbBr<sub>3</sub> perovskite solar cells (PSCs). We present a vapor-assisted solution technique that produces high-quality CsPbBr<sub>3</sub> perovskite films without annealing. Doping ZnO with trivalent metals such as yttrium (Y), antimony (Sb), and iron (Fe) improves the electrical properties and energy alignment with CsPbBr<sub>3</sub>. Our experiments show that Sb doping enhances charge extraction and reduces interface carrier recombination to achieve a power conversion efficiency (PCE) of 9.55% in the inorganic CsPbBr<sub>3</sub> PSCs. The optimized device maintains over 90% of its original PCE after 90 days under 65% relative humidity and 65 °C. Additionally, flexible CsPbBr<sub>3</sub> PSCs with an Sb-ZnO ETL achieve a record 6.06% efficiency with remarkable mechanical durability to retain 91.8% of initial PCE after 1000 bending cycles at a 3 mm curvature radius.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient CsPbBr3 perovskite films and the low-temperature fabrication of electron transport layers (ETLs) are crucial for the commercial viability of CsPbBr3 perovskite solar cells (PSCs). We present a vapor-assisted solution technique that produces high-quality CsPbBr3 perovskite films without annealing. Doping ZnO with trivalent metals such as yttrium (Y), antimony (Sb), and iron (Fe) improves the electrical properties and energy alignment with CsPbBr3. Our experiments show that Sb doping enhances charge extraction and reduces interface carrier recombination to achieve a power conversion efficiency (PCE) of 9.55% in the inorganic CsPbBr3 PSCs. The optimized device maintains over 90% of its original PCE after 90 days under 65% relative humidity and 65 °C. Additionally, flexible CsPbBr3 PSCs with an Sb-ZnO ETL achieve a record 6.06% efficiency with remarkable mechanical durability to retain 91.8% of initial PCE after 1000 bending cycles at a 3 mm curvature radius.

Abstract Image

通过全低温工艺在刚性和柔性基底上实现高效碲化镉硼三元包光体太阳能电池的多功能三元氧化物
高效的 CsPbBr3 包晶石薄膜和电子传输层 (ETL) 的低温制造对于 CsPbBr3 包晶石太阳能电池 (PSC) 的商业可行性至关重要。我们提出了一种气相辅助溶液技术,无需退火即可制备出高质量的 CsPbBr3 包晶体薄膜。在 ZnO 中掺杂三价金属,如钇(Y)、锑(Sb)和铁(Fe),可以改善 CsPbBr3 的电学特性和能量排列。我们的实验表明,掺杂锑可增强电荷提取,减少界面载流子重组,从而使无机 CsPbBr3 PSCs 的功率转换效率 (PCE) 达到 9.55%。在相对湿度为 65% 和温度为 65°C 的条件下,经过优化的器件在 90 天后仍能保持 90% 以上的原始 PCE。此外,带有 Sb-ZnO ETL 的柔性 CsPbBr3 PSCs 的效率达到了创纪录的 6.06%,并具有显著的机械耐久性,在 3 毫米曲率半径下弯曲 1000 次后仍能保持 91.8% 的初始 PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信