{"title":"Feature Interaction Dual Self-attention network for sequential recommendation.","authors":"Yunfeng Zhu, Shuchun Yao, Xun Sun","doi":"10.3389/fnbot.2024.1456192","DOIUrl":null,"url":null,"abstract":"<p><p>Combining item feature information helps extract comprehensive sequential patterns, thereby improving the accuracy of sequential recommendations. However, existing methods usually combine features of each item using a vanilla attention mechanism. We argue that such a combination ignores the interactions between features and does not model integrated feature representations. In this study, we propose a novel Feature Interaction Dual Self-attention network (FIDS) model for sequential recommendation, which utilizes dual self-attention to capture both feature interactions and sequential transition patterns. Specifically, we first model the feature interactions for each item to form meaningful higher-order feature representations using a multi-head attention mechanism. Then, we adopt two independent self-attention networks to capture the transition patterns in both the item sequence and the integrated feature sequence, respectively. Moreover, we stack multiple self-attention blocks and add residual connections at each block for all self-attention networks. Finally, we combine the feature-wise and item-wise sequential patterns into a fully connected layer for the next item recommendation. We conduct experiments on two real-world datasets, and our experimental results show that the proposed FIDS method outperforms state-of-the-art recommendation models.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1456192"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1456192","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Combining item feature information helps extract comprehensive sequential patterns, thereby improving the accuracy of sequential recommendations. However, existing methods usually combine features of each item using a vanilla attention mechanism. We argue that such a combination ignores the interactions between features and does not model integrated feature representations. In this study, we propose a novel Feature Interaction Dual Self-attention network (FIDS) model for sequential recommendation, which utilizes dual self-attention to capture both feature interactions and sequential transition patterns. Specifically, we first model the feature interactions for each item to form meaningful higher-order feature representations using a multi-head attention mechanism. Then, we adopt two independent self-attention networks to capture the transition patterns in both the item sequence and the integrated feature sequence, respectively. Moreover, we stack multiple self-attention blocks and add residual connections at each block for all self-attention networks. Finally, we combine the feature-wise and item-wise sequential patterns into a fully connected layer for the next item recommendation. We conduct experiments on two real-world datasets, and our experimental results show that the proposed FIDS method outperforms state-of-the-art recommendation models.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.