Microbes' role in environmental pollution and remediation: a bioeconomy focus approach.

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2024-08-23 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024033
Giuseppe Maglione, Paola Zinno, Alessia Tropea, Cassamo U Mussagy, Laurent Dufossé, Daniele Giuffrida, Alice Mondello
{"title":"Microbes' role in environmental pollution and remediation: a bioeconomy focus approach.","authors":"Giuseppe Maglione, Paola Zinno, Alessia Tropea, Cassamo U Mussagy, Laurent Dufossé, Daniele Giuffrida, Alice Mondello","doi":"10.3934/microbiol.2024033","DOIUrl":null,"url":null,"abstract":"<p><p>Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"723-755"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.

微生物在环境污染和修复中的作用:生物经济重点方法。
在环境污染带来的挑战不断升级的情况下,生物修复是一种前景广阔的解决方案。在过去的 25 年里,合成化学品和有害污染物大量涌入生态系统,需要采用创新方法来缓解和恢复。这些化合物的顽强生命力源于它们的非自然存在,给人类和环境健康带来了困扰。在这种情况下,微生物占据了中心位置,展示了它们催化环境修复的生物降解能力。目前,科学界支持将生物精炼和生物修复概念直接联系起来,以鼓励循环生物/经济实践。本综述旨在预先概述生物修复过程中使用的主要微生物和不同生物修复方法的最新进展。此外,还重点介绍了生物修复作为农用工业废物管理新方法的实施情况,强调了如何在减少环境污染的同时获得具有商业价值的增值产品,实现循环生物经济的目标。还报告了生物修复可行性方面的主要缺点和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信