Veikko Eronen, Kristiina Takkinen, Annika Torni, Kaichen Peng, Janne Jänis, Tarja Parkkinen, Nina Hakulinen, Juha Rouvinen
{"title":"Structural insights into ternary immunocomplex formation and cross-reactivity: binding of an anti-immunocomplex FabB12 to Fab220-testosterone complex","authors":"Veikko Eronen, Kristiina Takkinen, Annika Torni, Kaichen Peng, Janne Jänis, Tarja Parkkinen, Nina Hakulinen, Juha Rouvinen","doi":"10.1111/febs.17258","DOIUrl":null,"url":null,"abstract":"<p>Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody–based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å<sup>2</sup>) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17258","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/febs.17258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody–based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å2) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.