Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2024-08-15 eCollection Date: 2024-08-26 DOI:10.1021/jacsau.4c00377
Haiyang Yuan, Chen Zhu, Yu Hou, Hua Gui Yang, Haifeng Wang
{"title":"Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction.","authors":"Haiyang Yuan, Chen Zhu, Yu Hou, Hua Gui Yang, Haifeng Wang","doi":"10.1021/jacsau.4c00377","DOIUrl":null,"url":null,"abstract":"<p><p>Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (N<sub>lat</sub>) and the unique ability of N<sub>lat</sub> vacancies to activate N<sub>2</sub>. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH<sub>3</sub> via the reductive decomposition of N<sub>lat</sub> without N<sub>2</sub> activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which N<sub>lat</sub> plays a pivotal role in achieving the Volmer process and N<sub>2</sub> activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of N<sub>lat</sub> vacancy (<i>E</i> <sub>vac</sub>) can achieve maximum activity and maintain electrochemical stability, while low- or high-<i>E</i> <sub>vac</sub> ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of N<sub>lat</sub> on rocksalt-type MN(100), this maximum activity is limited to a yield of NH<sub>3</sub> of only ∼10<sup>-15</sup> mol s<sup>-1</sup> cm<sup>-2</sup>. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of N<sub>lat</sub> and show that the four-coordinate N<sub>lat</sub> can exhibit optimal activity and overcome the performance limitation, while less coordinated N<sub>lat</sub> fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (Nlat) and the unique ability of Nlat vacancies to activate N2. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH3 via the reductive decomposition of Nlat without N2 activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which Nlat plays a pivotal role in achieving the Volmer process and N2 activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of Nlat vacancy (E vac) can achieve maximum activity and maintain electrochemical stability, while low- or high-E vac ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of Nlat on rocksalt-type MN(100), this maximum activity is limited to a yield of NH3 of only ∼10-15 mol s-1 cm-2. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of Nlat and show that the four-coordinate Nlat can exhibit optimal activity and overcome the performance limitation, while less coordinated Nlat fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.

Abstract Image

优化晶格氮配位,打破金属氮化物电催化氮还原的性能限制。
金属氮化物(MNs)因其丰富的晶格氮(Nlat)和 Nlat 空位激活 N2 的独特能力,在电催化氮还原反应(NRR)中备受关注。然而,关于 MN 是否对 NRR 具有催化活性,或者在原位电化学条件下通过 Nlat 的还原分解产生 NH3 而不激活 N2 的问题一直存在争议,更不用说高性能 MN 催化剂的合理设计了。在此,我们以常见的岩盐型 MN(100) 催化剂为研究对象,建立了基于第一性原理微动力学模拟的定量理论框架来解决这些难题。结果表明,Mars-van Krevelen 机制在动力学上更有利于驱动大多数 MN 的无还原反应,其中 Nlat 在实现 Volmer 过程和 N2 活化方面起着关键作用。在稳定性、活性和选择性方面,我们发现 Nlat 空位形成能(E vac)适中的 MN(100) 可以达到最大活性并保持电化学稳定性,而低或高 E vac 的 MN(100) 要么不稳定,要么催化活性较低。不幸的是,由于 Nlat 在岩盐型 MN(100) 上的五配位结构特征,这种最大活性仅限于 NH3 的产率仅∼10-15 mol s-1 cm-2。耐人寻味的是,我们发现了 Nlat 局部结构特征的火山型活性调节作用,并表明四配位的 Nlat 可以表现出最佳活性并克服性能限制,而配位较少的 Nlat 则会失效。可以说,这项研究首次从理论上深入揭示了用于 NRR 的 MNs 的活性和稳定性悖论,并强调了反应动力学评估与当前流行的简单热力学分析相比的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信