{"title":"Pharmacophore mapping, 3D QSAR, molecular docking, and ADME prediction studies of novel Benzothiazinone derivatives.","authors":"Jahaan Shaikh, Salman Patel, Afzal Nagani, Moksh Shah, Siddik Ugharatdar, Ashish Patel, Drashti Shah, Dharti Patel","doi":"10.1007/s40203-024-00255-8","DOIUrl":null,"url":null,"abstract":"<p><p>In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R<sup>2</sup>) value of 0.9754, and a correlation coefficient for test set Q<sup>2</sup> value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"79"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00255-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the quest to combat tuberculosis, DprE1, a challenging target for novel anti-tubercular agents due to its small size and membrane location, has been a focus of research. DprE1 catalyzes the transformation of DPR into Ketoribose DPX, with Benzothiazinone emerging as a potent pharmacophore for inhibiting DprE1. Clinical trial drugs such as BTZ043, BTZ038, PBTZ169, and TMC-207 have shown promising results as DprE1 inhibitors. This study employed pharmacophore mapping of Pyrazolopyridine, Dinitrobenzamide, and Benzothiazinone derivatives to identify crucial features for eliciting a biological response. Benzothiazinone (Ligand code: 73) emerged as a reference ligand with a fitness score of 3.000. ROC analysis validated the pharmacophore with an excellent score of 0.71. To build a 3D QSAR model, a series of Benzothiazinone congeneric derivatives were explored. The model exhibited strong performance, with a standard deviation of 0.1531, a correlation coefficient for the training set (R2) value of 0.9754, and a correlation coefficient for test set Q2 value of 0.7632, indicating robust predictive capabilities. Contour maps guided the design of novel benzothiazinone derivatives, emphasizing steric, electrostatic, hydrophobic, H-bond acceptor, and H-bond donor groups for structure-activity relationships. Docking studies against PDB ID: 4NCR demonstrated favorable scores, with interactions aligning well with the in-built ligand 26 J. Docking validation via RMSD values supported the reliability of the docking results. This comprehensive approach aids in the design of novel benzothiazinone derivatives with potential anti-tubercular properties, contributing to the development of novel anti-tubercular agents which can be pivotal in the eradication of tuberculosis.