Understanding the fate of disinfection by-products in swimming pools: current empirical and mechanistic modeling insights.

IF 1.2 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Shaorong Chen, Zijian Li
{"title":"Understanding the fate of disinfection by-products in swimming pools: current empirical and mechanistic modeling insights.","authors":"Shaorong Chen, Zijian Li","doi":"10.1080/26896583.2024.2396250","DOIUrl":null,"url":null,"abstract":"<p><p>Disinfecting swimming pool water plays a crucial role in preventing the spread of harmful bacteria. However, the interaction between disinfectants and precursors can lead to the formation of potentially disinfection by-products (DBPs). Prolonged exposure to these DBPs may pose health risks. This review study investigates recent research advancements concerning the formation, exposure, and regulation of DBPs within swimming pools. It also provides an overview of existing models that predict DBPs generation in pools, highlighting their limitations. The review explores the mechanisms behind DBPs formation under different disinfectant and precursor conditions. It specifically discusses two types of models that simulate the production of these by-products. Compared to drinking water, swimming pool water presents unique challenges for model development due to its complex mix of external substances, human activities, and environmental factors. Existing models can be categorized as empirical or mechanistic. Empirical models focus on water quality parameters and operational practices, while mechanistic models delve deeper into the kinetics of DBPs generation and the dynamic nature of these compounds. By employing these models, it becomes possible to minimize DBPs production, optimize equipment design, enhance operational efficiency, and manage mechanical ventilation systems effectively.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2024.2396250","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Disinfecting swimming pool water plays a crucial role in preventing the spread of harmful bacteria. However, the interaction between disinfectants and precursors can lead to the formation of potentially disinfection by-products (DBPs). Prolonged exposure to these DBPs may pose health risks. This review study investigates recent research advancements concerning the formation, exposure, and regulation of DBPs within swimming pools. It also provides an overview of existing models that predict DBPs generation in pools, highlighting their limitations. The review explores the mechanisms behind DBPs formation under different disinfectant and precursor conditions. It specifically discusses two types of models that simulate the production of these by-products. Compared to drinking water, swimming pool water presents unique challenges for model development due to its complex mix of external substances, human activities, and environmental factors. Existing models can be categorized as empirical or mechanistic. Empirical models focus on water quality parameters and operational practices, while mechanistic models delve deeper into the kinetics of DBPs generation and the dynamic nature of these compounds. By employing these models, it becomes possible to minimize DBPs production, optimize equipment design, enhance operational efficiency, and manage mechanical ventilation systems effectively.

了解游泳池中消毒副产品的归宿:当前的经验和机理模型见解。
游泳池水消毒在防止有害细菌传播方面起着至关重要的作用。然而,消毒剂和前体之间的相互作用可能会形成潜在的消毒副产物(DBPs)。长期接触这些 DBPs 可能会对健康造成危害。本综述研究调查了有关游泳池中 DBPs 的形成、暴露和监管的最新研究进展。它还概述了预测泳池中产生 DBPs 的现有模型,并强调了这些模型的局限性。综述探讨了不同消毒剂和前体条件下 DBPs 的形成机理。它特别讨论了模拟这些副产品生成的两种模型。与饮用水相比,游泳池水因其复杂的外部物质、人类活动和环境因素组合,给模型开发带来了独特的挑战。现有模型可分为经验模型和机理模型。经验模型侧重于水质参数和操作实践,而机理模型则更深入地研究 DBPs 的生成动力学和这些化合物的动态性质。通过采用这些模型,可以最大限度地减少 DBPs 的产生、优化设备设计、提高运行效率并有效管理机械通风系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信