D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from QA•− to QB

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruri Nihara , Keisuke Saito , Hiroshi Kuroda , Yasuto Komatsu , Yang Chen , Hiroshi Ishikita , Yuichiro Takahashi
{"title":"D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from QA•− to QB","authors":"Ruri Nihara ,&nbsp;Keisuke Saito ,&nbsp;Hiroshi Kuroda ,&nbsp;Yasuto Komatsu ,&nbsp;Yang Chen ,&nbsp;Hiroshi Ishikita ,&nbsp;Yuichiro Takahashi","doi":"10.1016/j.bbabio.2024.149507","DOIUrl":null,"url":null,"abstract":"<div><p>In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from <em>Chlamydomonas reinhardtii</em>: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O<sub>2</sub>-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from Q<sub>A</sub><sup>•−</sup> to Q<sub>B</sub> in all mutants. Bicarbonate reconstitution resulted in enhanced O<sub>2</sub>-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004778","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•− to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.

Abstract Image

光系统 II 中的 D1-Tyr246 和 D2-Tyr244:对碳酸氢盐结合以及从 QA 到 QB 的电子传递的见解。
在光系统 II(PSII)中,D1-Tyr246 和 D2-Tyr244 对称位于非血红素铁复合物的碳酸氢盐配体的结合部位。在这里,我们通过从莱茵衣藻(Chlamydomonas reinhardtii)中产生四种 PSII 叶绿体突变体,研究了对称排列的酪氨酸对 D1-Tyr246 和 D2-Tyr244 在 PSII 功能中的作用:D1-Y246F、D1-Y246T、D2-Y244F 和 D2-Y244T。这些突变体表现出光自养生长的改变、PSII 蛋白积累的减少以及 O2 生成活性的减弱。闪烁诱导的荧光产量衰减动力学表明,在所有突变体中,从QA--到QB的电子传递速度明显减慢。碳酸氢盐重组导致 O2 生成活性增强,这表明突变体中碳酸氢盐结合不稳定。基于量子力学/分子力学方法的结构分析确定了水通道的存在,该通道导致大量水分子的加入和碳酸氢盐结合位点的不稳定。对碳酸氢盐稳定性至关重要的进水通道在突变体中表现出不同的路径。这些发现揭示了酪氨酸对在维持碳酸氢盐稳定性和促进原生 PSII 高效电子传递方面的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信