Marine microfossils: Tiny archives of ocean changes through deep time.

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2024-08-08 eCollection Date: 2024-01-01 DOI:10.3934/microbiol.2024030
Jasenka Sremac, Marija Bošnjak, Karmen Fio Firi, Ana Šimičević, Šimun Aščić
{"title":"Marine microfossils: Tiny archives of ocean changes through deep time.","authors":"Jasenka Sremac, Marija Bošnjak, Karmen Fio Firi, Ana Šimičević, Šimun Aščić","doi":"10.3934/microbiol.2024030","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms have inhabited the oceans since the dawn of Earth. Some of them have organic walls and some produce mineral tests that are usually composed of carbonate minerals or silica. They can therefore be preserved with original parts during sedimentary deposition or fossilized through permineralization or carbonization processes. The most common marine fossil groups studied by micropaleontologists are cyanobacteria, coccolithophores, dinoflagellates, diatoms, silicoflagellates, radiolarians, foraminifers, red and green algae, ostracods, and pteropods. Dormant or reproductive cysts can also be used for determinations of the fossil microbiota. Microfossils can be studied in petrographic slides prepared from rocks or separated from loosely consolidated rocks by disaggregation or dissolution and wet sieving. Their presence is sometimes recognized by biomarkers. Transmitted light microscopy and reflected light stereomicroscopy are necessary for micropaleontological studies whereas scanning electronic microscopy (SEM) aids research on the tiniest fossils and reveals fine skeletal details. Microorganisms have influenced the oxygenation of water and the atmosphere, as well as Earth's carbon cycle and have contributed to the formation of sedimentary rocks. By studying microfossils, paleontologists depict the age of the rock and identify depositional environments. Such studies help us recognize periods of stress in Earth's history and understand their influence on living organisms. Biogenic rocks, made of microfossils, can be used as raw materials, such as fossil fuels, building stone, or additives for the food industry, agricultural, or cosmetic purposes.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"10 3","pages":"644-673"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2024030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms have inhabited the oceans since the dawn of Earth. Some of them have organic walls and some produce mineral tests that are usually composed of carbonate minerals or silica. They can therefore be preserved with original parts during sedimentary deposition or fossilized through permineralization or carbonization processes. The most common marine fossil groups studied by micropaleontologists are cyanobacteria, coccolithophores, dinoflagellates, diatoms, silicoflagellates, radiolarians, foraminifers, red and green algae, ostracods, and pteropods. Dormant or reproductive cysts can also be used for determinations of the fossil microbiota. Microfossils can be studied in petrographic slides prepared from rocks or separated from loosely consolidated rocks by disaggregation or dissolution and wet sieving. Their presence is sometimes recognized by biomarkers. Transmitted light microscopy and reflected light stereomicroscopy are necessary for micropaleontological studies whereas scanning electronic microscopy (SEM) aids research on the tiniest fossils and reveals fine skeletal details. Microorganisms have influenced the oxygenation of water and the atmosphere, as well as Earth's carbon cycle and have contributed to the formation of sedimentary rocks. By studying microfossils, paleontologists depict the age of the rock and identify depositional environments. Such studies help us recognize periods of stress in Earth's history and understand their influence on living organisms. Biogenic rocks, made of microfossils, can be used as raw materials, such as fossil fuels, building stone, or additives for the food industry, agricultural, or cosmetic purposes.

海洋微化石:海洋微化石:深海变化的微小档案。
自地球诞生以来,微生物就一直栖息在海洋中。它们有的具有有机壁,有的产生矿物检验,通常由碳酸盐矿物或二氧化硅组成。因此,它们可以在沉积过程中与原始部分一起保存下来,也可以通过过矿化或碳化过程成为化石。微古生物学家研究的最常见的海洋化石类别是蓝藻、嗜茧藻、甲藻、硅藻、硅鞭毛藻、放射虫、有孔虫、红藻和绿藻、梭鱼和翼足目动物。休眠期或繁殖期的孢囊也可用于确定化石微生物群。微化石可在从岩石制备的岩相切片中进行研究,或通过解离或溶解和湿筛从松散固结的岩石中分离出来。微化石的存在有时可以通过生物标记来识别。透射光显微镜和反射光立体显微镜是微古生物学研究的必要手段,而扫描电子显微镜(SEM)则有助于研究最微小的化石,并揭示骨骼的细节。微生物影响了水和大气的含氧量以及地球的碳循环,并对沉积岩的形成做出了贡献。通过研究微化石,古生物学家可以描绘出岩石的年龄并确定沉积环境。这些研究有助于我们识别地球历史上的压力时期,并了解它们对生物的影响。由微化石组成的生物成岩可用作化石燃料、建筑石材或食品工业、农业或化妆品添加剂等原材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信