{"title":"Urban flooding simulation and flood risk assessment based on the InfoWorks ICM model: A case study of the urban inland rivers in Zhengzhou, China.","authors":"Huaibin Wei, Heng Wu, Liyuan Zhang, Jing Liu","doi":"10.2166/wst.2024.280","DOIUrl":null,"url":null,"abstract":"<p><p>Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and 100a, alongside rainfall durations of 1 and 24 h. Subsequently, the H-V (hazard-vulnerability) method was applied to evaluate urban flooding risk. Three indicators were selected for each of hazard factors and vulnerability factors. The relative weight values of each indicator factor were calculated using the AHP method. The result shows that (1) flood depth, rate, and duration escalate with longer rainfall return periods, yet decrease as the duration of rainfall increases; (2) as the rainfall return period lengthens, the proportion of node overflow rises, whereas it diminishes with longer rainfall durations, leading to an overall overloaded state in the pipeline network; and (3) the distribution in the research area is mainly low-risk areas, with very few extremely high-risk. Medium to high-risk areas are mainly distributed on both sides of the river, in densely built and low-lying urban areas. This study demonstrates that the model can accurately simulate urban flooding and provide insights for flood analyses in comparable regions.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1338-1358"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.280","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and 100a, alongside rainfall durations of 1 and 24 h. Subsequently, the H-V (hazard-vulnerability) method was applied to evaluate urban flooding risk. Three indicators were selected for each of hazard factors and vulnerability factors. The relative weight values of each indicator factor were calculated using the AHP method. The result shows that (1) flood depth, rate, and duration escalate with longer rainfall return periods, yet decrease as the duration of rainfall increases; (2) as the rainfall return period lengthens, the proportion of node overflow rises, whereas it diminishes with longer rainfall durations, leading to an overall overloaded state in the pipeline network; and (3) the distribution in the research area is mainly low-risk areas, with very few extremely high-risk. Medium to high-risk areas are mainly distributed on both sides of the river, in densely built and low-lying urban areas. This study demonstrates that the model can accurately simulate urban flooding and provide insights for flood analyses in comparable regions.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.