Optimizing intermittent micro-aeration as a strategy for enhancing aniline anaerobic biodegradation: kinetic, ecotoxicity, and microbial community dynamics analyses.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Isabelle Câmara, Victor Ventura de Souza, Ana Christina Brasileiro Vidal, Bruna Soares Fernandes, Fernanda Magalhães Amaral, Fabrício Motteran, Savia Gavazza
{"title":"Optimizing intermittent micro-aeration as a strategy for enhancing aniline anaerobic biodegradation: kinetic, ecotoxicity, and microbial community dynamics analyses.","authors":"Isabelle Câmara, Victor Ventura de Souza, Ana Christina Brasileiro Vidal, Bruna Soares Fernandes, Fernanda Magalhães Amaral, Fabrício Motteran, Savia Gavazza","doi":"10.2166/wst.2024.264","DOIUrl":null,"url":null,"abstract":"<p><p>Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were <i>Comamonas</i>, <i>Clostridium</i>, <i>Longilinea</i>, <i>Petrimonas</i>, <i>Phenylobacterium</i>, <i>Pseudoxanthomonas</i>, and <i>Thiobacillus</i>. In contrast, in T10 were <i>Pseudomonas</i>, <i>Delftia</i>, <i>Leucobacter</i>, and <i>Thermomonas</i>. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to <i>Allium cepa</i> seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.264","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater and soil contamination by aromatic amines (AAs), used in the production of polymers, plastics, and pesticides, often results from improper waste disposal and accidental leaks. These compounds are resistant to anaerobic degradation; however, micro-aeration can enhance this process by promoting microbial interactions. In batch assays, anaerobic degradation of aniline (0.14 mM), a model AA, was tested under three micro-aeration conditions: T30, T15, and T10 (30, 15, and 10 min of micro-aeration every 2 h, respectively). Aniline degradation occurred in all conditions, producing both aerobic (catechol) and anaerobic (benzoic acid) byproducts. The main genera involved in T30 and T15 were Comamonas, Clostridium, Longilinea, Petrimonas, Phenylobacterium, Pseudoxanthomonas, and Thiobacillus. In contrast, in T10 were Pseudomonas, Delftia, Leucobacter, and Thermomonas. While T30 and T15 promoted microbial cooperation for anaerobic degradation and facultative respiration, T10 resulted in a competitive environment due to dominance and oxygen scarcity. Despite aniline degradation in 9.4 h under T10, this condition was toxic to Allium cepa seeds and exhibited cytogenotoxic effects. Therefore, T15 emerged as the optimal condition, effectively promoting anaerobic degradation without accumulating toxic byproducts. Intermittent micro-aeration emerges as a promising strategy for enhancing the anaerobic degradation of AA-contaminated effluents.

优化间歇微曝气,将其作为增强苯胺厌氧生物降解的一种策略:动力学、生态毒性和微生物群落动力学分析。
芳香胺 (AA) 用于聚合物、塑料和杀虫剂的生产,其对地下水和土壤的污染往往是由于废物处理不当和意外泄漏造成的。这些化合物对厌氧降解具有抗性;但是,微曝气可以通过促进微生物的相互作用来加强这一过程。在批量试验中,在三种微曝气条件下测试了苯胺(0.14 mM)(一种 AA 模型)的厌氧降解:T30、T15 和 T10(每 2 小时分别微曝气 30、15 和 10 分钟)。苯胺在所有条件下均发生降解,产生好氧(儿茶酚)和厌氧(苯甲酸)副产物。T30 和 T15 中涉及的主要菌属有 Comamonas、梭菌属、Longilinea、Petrimonas、Phenylobacterium、Pseudoxanthomonas 和 Thiobacillus。相反,在 T10 中则有假单胞菌、Delftia、Leucobacter 和热单胞菌。T30 和 T15 促进了微生物在厌氧降解和兼性呼吸方面的合作,而 T10 则由于优势和缺氧导致了竞争环境。尽管苯胺在 T10 条件下的降解时间为 9.4 小时,但这种条件对薤白种子具有毒性和细胞毒性作用。因此,T15 成为最佳条件,可有效促进厌氧降解,同时不会积累有毒副产品。间歇微曝气是加强 AA 污染污水厌氧降解的一种有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信